Marsh Migration Models & GIS Tools: visualizations for informed decisions

Wetlands Workshop June 25, 2025

Molly Mitchell Virginia Institute of Marine Science molly@vims.edu

What role is wetland migration expected to play in the future of marshes and climate resilience in the Chesapeake region?

Expected to be of critical importance!

Response of marshes to sea level rise

To keep pace with sea level: a) Marshes migrate b) Marshes accrete

Marsh accretion affected by:

- Sediment supply coming from
 - Watershed
 - Adjacent lands (via runoff or tidal waters)
 - Marsh front edge erosion
- Current CP management goals are to restrict sediment in waters

Fagherazzi et al. 2013. Oceanography, 26(3): 70-77.

≤ 0.001

Marsh area change over ~30 years with ~ 15-20 cm of sea level rise

- overall change = loss of 2,187,000 m², or ~2.7% of marsh area
- Highest loss areas = high development, high erosion

Next 30 years will have ~3x the sea level rise

Impact of accelerating SLR on carbon sequestration

The impact of marsh change on habitat provision (preliminary results)

- Key survey during the early 1990's established a baseline for bird communities (including marsh obligates & facultative species); repeated in 2022-2023
- The "newness" of a marsh was a significant predictor of bird usage.
- Newly migrated marsh was associated with lower abundance of saltmarsh and marsh obligate species, but higher abundance of facultative marsh breeding species

https://ccbbirds.org/2023/06/01/ccb-and-saltmarsh-bird-surveys/

How marsh ecosystem services scale

Scenario step number	Elevations (NAVD88)	Approximate year		
1	0 m - 0.61m	2010		
2	0.15 m - 0.46 m 2020			
3	0.30 m - 0.91 m 2030			
4	0.46 m - 1.07 m	2040		
5	0.61 m - 1.22 m	2050		
6	0.76 m - 1.37 m	2058		
7	0.91 m - 1.52 m	2062		
8	1.07 m - 1.68 m	2070		
9	1.22 m - 1.83 m	2078		
10	1.37 m - 1.98 m	2082		
11	1.52 m - 2.13 m	2090		
12	1.68 m - 2.29 m	2095		
13	1.83 m - 2.44 m	2100		
14	1.98 m - 2.59 m	2105		
15	2.13 m - 2.74 m	2110		
16	2.29 m - 2.90 m	2115		
17	2.44 m - 3.05 m	2118		
18	2.59 m - 3.20 m	2121		
19	2.74 m - 3.35 m	2124		
20	2.90 m - 3.51 m	2127		
21	3.05 m - 3.66 m	2130		

Years based on Boon & Mitchell 2015

Summary

What we know	What we are unsure about
Marshes are migrating in response to SLR	The persistence of the current marsh and how that contributes to total future marsh
Marshes will expand in some areas and contract in others	Which marshes will expand; dependent on land use and decision making
Accelerating SLR means that future changes will occur more rapidly than past changes	The timeline on which these changes will occur

What tools and timeframes are most appropriate to identify wetland migration corridors?

Marsh models are abundant and can be used for management in the next 30-50 years

Model comparison - Data differences

MODEL	Resolution (land use)	Resolution (elevation)	Elevation source	Vertical datum	Marsh Source
SLAMM	30m x 30m	10m x 10m	CUDEM	Mean Tide Level	NWI (1988 - 1992)
InVEST	30m x 30m	3m x 3m	CUDEM	MHHW	VIMS TMI (Berman et al. 2016)
ТММ	30m x 30m (C- CAP)	1m x 1m	CBTBDEM	NAVD88	VIMS TMI (2016)
NOAA	30m x 30m (C- CAP)	*	CUDEM	tidal datums	C-CAP?
ETM	1m x 1m (VGIN)	1m x 1m (lidar)	CBTBDEM	NAVD88	NWI and TMI

Sea-level rise (SLR) scenarios

2 water levels were selected to allow for consistent comparison across models

The selected water levels were:

- 2 ft increase in MSL
- 4 ft increase in MSL above the current tidal datum

Methodology

(a)

A) Migrated areas of marsh are mapped for each model individually

0 1 1 1 Summed Model 2 B) Maps are converted to raster layer 0 0 0 rasters and each pixel is 0 0 0 coded (presence of marsh = 1, all other Model 3 land/water = 0). 0 C) The coded raster layers 0 1 0 are summed to create a single layer showing the 0 0 - No Data number of models that 1 - Output from 1 model Model 4 0 2 - Output from 2 models identify each pixel as 3 - Output from 3 models 1 0 0 marsh. 4 - Output from 4 models 5 - Output from 5 models 0 Model 5 0 1 Mitchell, M., Nunez, K., Herman, J., Tombleson, C. and Mason, P., 2023. A marsh multimodel approach to inform rise. Ecological Solutions and Evidence, 4(4), p.e12285.

(b)

Model 1

0

0

1

(c)

future marsh management under accelerating sea-level

Example results

- ETM
- •INVEST
- NOAA
- •SLAMM

Example results

Mitchell, M., Nunez, K., Herman, J., Tombleson, C. and Mason, P., 2023. A marsh multimodel approach to inform future marsh management under accelerating sea-level rise. *Ecological Solutions and Evidence*, 4(4), p.e12285.

CBP --> Marsh Migration Corridor Envelope for Maryland and Virginia (large pixels)

VIMS --> Marsh Migration for Virginia (small pixels)

W&M ScholarWorks

Migration of the Tidal Marsh Range Under Sea Level Rise for Coastal Virginia, with Land Cover Data

<u>Julie Herman</u>, Virginia Institute of Marine Science

Molly Mitchell, Virginia Institute of Marine Science

NOAA sea level rise model --> Marsh Migration around the coastline

Summary

What we know	What we are unsure about		
Areas with high potential for marsh migration	Exactly when and where the future marsh will be		
There are several different models that can be used to assess this question	The data needed to accurately parameterize them is limited and there is very limited validation of the models		
Multi-model approaches can provide the information at a zoomed out scale (e.g. target conservation efforts)	They can't assess overall future marsh acreage or be used in a parcel-scale regulatory sense		
Variability in projections in the next 30-50 years is constrained	Beyond that variation in sea level projections and land use change projections get big, making it difficult to land on concrete management strategies		

