
Correspondence Between Environmental Gradients and the 

Assemblage Structure of Littoral Fishes in the Tidal Portion 

of Three Virginia Coastal Plain Rivers

A Thesis 

Presented to 

The Faculty of the School of Marine Science 

The College of William & Mary in Virginia

In Partial Fulfillment 

Of the Requirements for the Degree of 

Master of Science

by

C. Michael Wagner 

1997



APPROVAL SHEET

This thesis is submitted in partial fulfillment of 
the requirements for the degree of

Master of Science

C. Michael Wagner

Approved, December 1997

Herbert M. Austin, Ph.D. 
Committee Chairman/Advisor

J. Emmett Duffy,

David A. Ev;

A. Musick, Ph.D.

Linda C. Schaffner,



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS......................................................................................................iv

LIST OF TABLES....................................................................................................................v

LIST OF FIG U RES............................................................................................................  vii

ABSTRACT.............................................................................................................................. x

INTRODUCTION....................................................................................................................2

METHODS AND MATERIALS.............................................................................................8

RESULTS

General Attributes of the Fauna................................................................................22

Rappahannock River Community Patterns .............................................................25

York-Mattaponi River Community P atterns.......................................................  . 46

York-Pamunkey River Community Patterns...........................................................66

James River Community Patterns ............................................................................86

DISCUSSION ...................................................................................................................... 107

CONCLUSIONS..................................................................................................................138

APPENDICES

Appendix 1: Guidelines for Interpreting P lo ts ................... 140

Appendix 2: Species Codes for DC A & DCCA P lo ts .......................................... 147

LITERATURE CITED ....................................................................................................... 148

VITA ................................................  163



ACKNOWLEDGMENTS

I would like to thank the members of my supervisory committee, Drs. J. Emmett 
Duffy, David A. Evans, John A. (Jack) Musick and Linda C. Schaffner, with special 
thanks to my major advisor Dr. Herbert M. Austin, for their thoughtful guidance, 
encouragement and support throughout this project. Dr. Austin was generous in his 
allowing me to pursue new ideas and methods on my own, while keeping me focussed on 
the primary goals. I would also like to thank the following specific individuals: Mr. 
Donald (Dee) Seaver and Mr. Deane Estes of the VIMS professional staff for invaluable 
discussions in the office and the field concerning the history of the juvenile striped bass 
survey; Dr. Mike Palmer (University of Oklahoma) and Dr. Stuart Ware for training in 
correspondence analysis techniques; Dr. Bob Diaz for statistical insight; Mr. Chris 
Bonzek for patient SAS tutoring; the VIMS library staff, particularly Mr. Joey Brown and 
Mrs. Diane Walker for prompt and patient assistance; Mrs. Gloria Rowe for general 
assistance around the office; and, to the following list of staff and students whose 
generosity in allowing me to participate in their projects made the entire Chesapeake Bay 
my classroom: Ian Bartol, Giancarlo Cicchetti, Sarah Gaichas, Jim Gelsleichter, Dean 
Grubbs, Juli Harding, Richard Holmquist, Richard Kraus, Dr. Joe Loesch, Dr. Roger 
Mann, Amanda Mueller, Dr. John Olney, Michelle Thompson, John Walter and Geoff 
White.

iv



LIST OF TABLES

Table Page

1. Nearshore substrate classification system.................................................................. 21

2. Summary data and ecological classification for fish species captured by the
VIMS juvenile striped bass seine survey, 1990-1994.............................................. 24

3. Direct comparison of DCA vs. DCCA via Spearman rank correlation for the
Rappahannock River stations..................................................................................... 36

4. Results of the DCCA analysis of fish assemblages from the Rappahannock
River stations............................................................................................................... 37

5. Dominant and indicator taxa for TWINSPAN groups of Rappahannock River
stations..........................................................................................................................39

6. Average environmental values by TWINSPAN group for stations from the
Rappahannock River................................................................................................... 40

7. Direct comparison of DCA vs. DCCA via Spearman rank correlation for the
York-Mattaponi River stations................................................................................... 56

8. Results of the DCCA analysis of fish assemblages from the York-Mattaponi
River stations................................................................................................................57

9. Dominant and indicator taxa for TWINSPAN groups of York-Mattaponi River
stations.......................................................................................................................... 59

10. Average environmental values by TWINSPAN group for stations from the
York-Mattaponi River................................................................................................. 60

11. Direct comparison of DCA vs. DCCA via Spearman rank correlation for the
York-Pamunkey River stations...................................................................................76

12. Results of the DCCA analysis of fish assemblages from the York-Pamunkey
River stations............................................................................................................... 77

13. Dominant and indicator taxa for TWINSPAN groups of York-Pamunkey
River stations............................................................................................................... 79



14. Average environmental values by TWINSPAN group for stations from the 
York-Pamunkey River.................................................................................................80

15. Direct comparison of DCA vs. DCCA via Spearman rank correlation for the
James River stations...................................................  97

16. Results of the DCCA analysis of fish assemblages from the James River 
stations........................................................................................................................ .98

17. Dominant and indicator taxa for TWINSPAN groups of James River
stations........................................................................................................................ 100

18. Average environmental values by TWINSPAN group for stations from the 
James River.................................... 101

19. Common species characteristic of each of the three major faunal zones and 
ubiquitous species common in two or more adjacent zones of the longitudinal 
aquatic gradient in the Rappahannock River...........................................................125

20. Common species characteristic of each of the three major faunal zones and
ubiquitous species common in two or more adjacent zones of the longitudinal 
aquatic gradient in the York-Mattaponi River.........................................................126

21. Common species characteristic of each of the three major faunal zones and
ubiquitous species common in two or more adjacent zones of the longitudinal 
aquatic gradient in the York-Pamunkey River........................................................ 127

22. Common species characteristic of each of the three major faunal zones and 
ubiquitous species common in two or more adjacent zones of the longitudinal 
aquatic gradient in the James River..........................................................................128

23. Diversity of fishes from all rivers expressed as expected number of species per 
100 individuals via rarefaction (E(S)), Shannon-Wiener diversity (IT) and 
Pielou’s species evenness (J’)...................................................................................131

vi



LIST OF FIGURES

Figure Page

1. Juvenile striped bass survey sampling locations........................................................ 20

2. TWINSPAN classification of Rappahannock River stations....................................33

3. DC A ordination of Rappahannock River stations....................................................34

4. DCA ordination of Rappahannock River species.......................................................35

5. DCCA ordination of Rappahannock River species....................................................38

6. Total and rarefied species longitudinal species richness in the Rappahannock
River, 1990-1994.........................................................................................................41

7. Total species captured and total area swept for Rappahannock River
stations, 1990-1994..................................................................................................... 42

8. Longitudinal species evenness (Pielou’s) in the Rappahannock River,
1990-1994, fit with a LOWESS curve.......................................................................43

9. Longitudinal species diversity (Shannon-Wiener) in the Rappahannock
River, 1990-1994, fit with a LOWESS curve........................................................... 44

10. Longitudinal species turnover (beta diversity) in the Rappahannock River,
1990-1994.....................................................................................................................45

11. TWINSPAN classification of York-Mattaponi River stations................................. 53

12. DCA ordination of York-Mattaponi River stations .  ............................................. 54

13. DCA ordination of York-Mattaponi River species............................................  55

14. DCCA ordination of York-Mattaponi River species................................................. 58

15. Total and rarefied species longitudinal species richness in the York-Mattaponi
River, 1990-1994. ...................   61

16. Total species captured and total area swept for York-Mattaponi River
stations, 1990-1994....................................................................................................  62



17. Longitudinal species evenness (Pielou’s) in the York-Mattaponi River,
1990-1994, fit with a LOWESS curve.......................................................................63

18. Longitudinal species diversity (Shannon-Wiener) in the York-Mattaponi
River, 1990-1994, fit with a LOWESS curve........................................................... 64

19. Longitudinal species turnover (beta diversity) in the York-Mattaponi River,
1990-1994...............................................  65

20. TWINSPAN classification of York-Pamunkey River stations................................. 73

21. DCA ordination of York-Pamunkey River stations..................................................74

22. DCA ordination of York-Pamunkey River species....................................................75

23. DCCA ordination of York-Pamunkey River species.................................................78

24. Total and rarefied species longitudinal species richness in the York-Pamunkey
River, 1990-1994........................................................................................................ 81

25. Total species captured and total area swept for York-Pamunkey River
stations, 1990-1994....................................................................................................  82

26. Longitudinal species evenness (Pielou’s) in the York-Pamunkey River, 1990-
1994, fit with a LOWESS curve......................................................................   83

27. Longitudinal species diversity (Shannon-Wiener) in the York-Pamunkey
River, 1990-1994, fit with a LOWESS curve............................................................84

28. Longitudinal species turnover (beta diversity) in the York-Pamunkey River,
1990-1994...................................................................................................................  85

29. TWINSPAN classification of James River stations...................................................94

30. DCA ordination of James River sta tions.................. 95

31. DCA ordination of James River species..................................................................... 96

32. DCCA ordination of James River species.................................................................. 99

33. Total and rarefied species longitudinal species richness in the James River,
1990-1994.................................................................................................................  102

viii



34. Total species captured and total area swept for James River stations,
1990-1994.................................................................................................................  103

35. Longitudinal species evenness (Pielou’s) in the James River, 1990-1994,
fit with a LOWESS curve......................................................................................... 104

36. Longitudinal species diversity (Shannon-Wiener) in the James River,
1990-1994, fit with a LOWESS curve.....................................................................105

37. Longitudinal species turnover (beta diversity) in the James River,
1990-1994.................................................................................................................  106

38. Major ecoregions along the axial coenocline........................................................... 129

39. Large-scale distributions of fishes with respect to the strength of the salinity
gradient in the tidal portions of the rivers................................................................130

40. The relative number of species in relation to salinity (after Remane 1934). . . . 132

41. The relative number of fish species in relation to salinity along the estuarine
gradient (after Odum 1988)..................................................................................... 133

42. The relationship between the average annual expected number of species (ESI00) 
via rarefaction and the average annual summer salinity for all stations............... 134

43. Large-scale distribution of freshwater fish species in Virginia streams and
rivers............................................................................................................................135

44. The relationship of species turnover rate to the incipient stress point which
arises at 0-2 ppt salinity.............................................................................................136

45. Comparison of the Venice system to estuarine salinity zones derived from
multivariate analysis by Bulger et al. 1993............................................................. 137

46. Example of a TWINSPAN classification dendrogram............................................144

47. Example of a detrended correspondence analysis biplot of station scores and
species scores............................................................................................................. 145

48. Example of a detrended canonical correspondence analysis biplot of species
scores and environmental vectors.............................................................................146

ix



ABSTRACT

The general distributional patterns of fishes associated with the Chesapeake Bay 
system have been addressed numerous times over the past century. These accounts are 
largely focussed on the mainstem of the Bay, and often offer little more than annotated 
species lists for the low salinity and tidal freshwater reaches of the major southern 
tributaries. This study focusses on the region of the lower Bay associated with the 
freshwater interface and provides details on the distribution and abundance of several 
littoral fish species with respect to large-scale environmental gradients. Littoral fishes 
were collected bi-weekly during a ten week period from July to mid-September from the 
major tributaries of lower Chesapeake Bay during the period 1990-1994 as part of a bay- 
wide effort to monitor the abundance of juvenile striped bass.

Littoral fishes were ordered along a large-scale spatial gradient between tidal 
freshwater and mesohaline river reaches during summer, when relatively stable 
hydrological conditions create a well-defined salinity gradient. This longitudinal 
coenocline was similar to patterns observed in other temperate and tropical zone coastal 
faunas, and is characterized by a series of species supplements and replacements in 
successive downstream locations. Fish assemblages generally grade smoothly into each 
other with one notable exception; the freshwater interface is a boundary with a markedly 
increased rate of species turnover due a peak in physiological stress associated with 0-2 
ppt salinity. Large-scale zonation in the river systems corresponded to three basic habitat 
types: permanent tidal freshwater, the freshwater interface (lower tidal freshwater and 
oligohaline areas which straddle the interface) and the mesohaline mid-estuary. Though 
many of the species responsible for these patterns undergo large interannual fluctuations 
in abundance, the spatial assemblage structure during summer appears stable from year to 
year.

Dominant species were widely dispersed within each of the three ecoregions and 
few species were characteristic of only one aquatic habitat type. Two types of fishes 
dominated the littoral zone: juveniles of large migratory species and adults of small 
residents. Large-scale distribution of these fishes along the river axis corresponded with 
salinity (and its correlates) up to the interface, and with structural attributes of the habitat 
(nearshore sediment grain size, presence of SAV’s) in the permanent tidal freshwater 
river reaches. Overall, patterns of species composition and richness in the saline portion 
of the study area agree well with earlier models of physico-chemical factors in structuring 
temperate estuarine faunas. A coenocline along the salinity gradient was evident, and 
exhibited: (1) intergrading, but distinct, fish assemblages; (2) a species minimum near 8- 
10 ppt as predicted by Remane (1934); and, (3) a peak in the rate of species turnover near 
the incipient stress point. The permanent tidal freshwater reaches were more riverine in 
character, and were typified by speciose and relatively stable assemblages dominated by 
resident second division freshwater fishes and the juveniles of several diadromous 
species. Although the resident fauna are certainly derivative of more upland, non-tidal 
streams, the open connection to the estuary and the free-flow of individual fishes across 
the interface, suggest tidal freshwater is best viewed as the upper end of the estuary.
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INTRODUCTION

The goals of community ecology are to record the patterns of species associations 

which occur in nature, elucidate the causal processes underlying these patterns, and, as 

much as possible, to seek general explanations (Wiens 1984). During the early decades 

of modem American ecology most biologists took for granted the hypothesis of Frederic 

Clements that natural communities were well-defined units which were fundamental 

structures in nature and which contacted one another along narrow boundaries called 

‘ecotones’ (Macintosh 1985, 1995). The natural community was likened to an individual 

‘super-organism’; a discrete functional assemblage of interrelated and interdependent 

r parts ( Tansley 1935; Clements 1936). In three elaborations of his ‘individualistic 

concept’, H.A. Gleason (1917, 1926, 1939) offered an opposing view predicated on the 

Gaussian distribution of species along gradients of variation in the environment and 

diverse probabilities of recmitment of new individuals. Gleason’s (1926) version of the 

individualistic concept of community stmcture has since been recognized as one of the 

‘classic papers in the foundation of ecology’ (Real & Brown 1991) and has provided the 

theoretical foundation for the empirical study of species distributions along natural 

gradients in habitat condition (the ‘coenocline’ from Whittaker 1967).

Spatial variation in the abundance of a species, and hence its apparent importance 

within an assemblage, has therefore been attributed to spatial variation in the 

environmental factors which affect it. Such factors include resource availability, climatic 

variables and other forces which comprise a complex hierarchy of physical and biotic 

environmental components that impinge (or promote) a species’ reproduction and

2



3

survival. Consequently, explaining spatial variation in the abundance of species is scale 

dependent (May 1974; Steele 1989; Wiens 1989), and studies of the relationships 

between fishes and habitat variables offer no exceptions to this rule (Rahel et al. 1984; 

Livingston 1987; Dunham & Vinyard 1997). Since the mid-1980's, developments in 

ecologically sound multivariate techniques for gradient analysis (e.g., canonical 

correspondence analysis and non-metric multidimensional scaling) have intensified the 

interest in quantitative studies of the large-scale structure and diversity of finfish 

communities along complex riverine gradients (e.g., Matthews & Robison 1988; 

Townsend & Peirson 1988; Ibarra & Stewart 1989; Edds 1993). However, few studies 

have explicitly addressed the longitudinal patterns of assemblages in low salinity habitats 

adjacent to and crossing the freshwater interface of estuarine ecosystems (Odum 1988; 

Peterson & Ross 1991; Winemiller & Leslie 1992).

Longitudinal changes in assemblage structure within temperate non-tidal streams 

and rivers have been generally attributed to one of two processes: biotic zonation or 

continual addition of species downstream (Rahel & Hubert 1991). Biotic zonation refers 

to relatively distinct assemblages which arise in flowing waters as a consequence of local 

discontinuities in stream geomorphology or temperature. Early descriptions of these 

zones were articulated by European workers, who named the zones after locally dominant 

species (see Hawkes 1975), and similar patterns have been reported elsewhere (Balon & 

Stewart 1983; Moyle & Herbold 1987). In contrast to the advocates of zonation, many 

North American workers have viewed changes in assemblage structure as indicative of 

increasing community complexity through the sequential downstream addition of species



4

(Sheldon 1968; Jenkins & Freeman 1972; Evans & Noble 1979). The gradual 

downstream accumulation of species has been attributed to increases in habitat stability 

(Schlosser 1987) and diversity (Gorman & Karr 1978; Schlosser 1982). An alternate 

explanation maintains that upstream sites are more prone to periodic environmental 

disturbances where only a few, hardy species with rapid recolonization abilities will 

persist, while relatively stable downstream environs may support a broader assemblage of 

species (Horwitz 1978; Matthews & Styron 1981). However, recent data suggests that 

periods of environmental stress (e.g., drought) may actually promote the upstream 

colonization of species otherwise physically ill-equipped for the upstream migration 

(Grossman et al. in press).

Similarly, longitudinal patterns in estuarine fish assemblage structure have also 

been attributed to individual population responses to environmental gradients. 

Physiochemical factors appear to govern broad spatial distributions within the estuary, 

while species interactions (competition and predation) probably only fine tune spatial 

distributions on a smaller scale (Ross & Epperly 1985; Day et al. 1989; Menge & Olsen 

1990). Historically, the most accepted of these factors for estuaries located along the 

western mid-Atlantic coast has been salinity (McHugh 1967). Distributions of estuarine 

macroinvertebrates and fishes have been shown to directly follow primary salinity 

gradients in the form of well-defined coenoclines (Boesch 1977; Weinstein et al. 1980). 

Other factors which have been implicated in governing the broad spatial distribution of 

estuarine fishes include temperature (Joseph 1973; Yanez-Arancibia et al. 1982), 

turbidity (Blaber & Blaber 1980; Yanez-Arancibia et al. 1985), calm water (Blaber &
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Whitfield 1977), food availability (May 1974; Houde 1978; Lasker 1975; Whitfield 1980; 

Livingston 1982; Yanez-Arancibia et al. 1986), predation pressure (Blaber & Blaber 

1980) and distance from the estuary mouth (Loneragan et al. 1986).

Sandwiched between the well-studied environments of non-tidal streams and 

polyhaline estuaries are the realms of tidal freshwater and the low salinity upper estuary. 

The relative importance of environmental gradients to assemblage structure has yet to be 

fully evaluated for these aquatic systems. Although generally less studied (Moyle &

Cech 1988; Peterson & Ross 1991), some studies in Gulf of Mexico (Rounsefell 1964; 

Felley 1987; Hastings et al. 1987; Peterson & Ross 1991) and western mid-Atlantic 

(Rogers et al. 1984; Odum et al. 1984; Odum 1988) estuaries have been focussed on the 

differences between tidal freshwater and estuarine fish assemblages. In general, the 

assemblages fish species present in the littoral zones of these aquatic systems are 

dominated by two groups of small individuals which occupy the shallows as a refugium 

from predators: (1) juveniles of larger migratory species (e.g., striped bass, Atlantic 

croaker); and, (2) adults of small resident species (e.g., cyprinnid minnows, killifishes).

The assemblage of fishes in tidal freshwater is markedly different from those 

associated with oligohaline and mesohaline estuarine waters (Rozas & Odum 1987b; 

Odum et al. 1984; Odum 1988; Rakocinski et al. 1992). Odum et al. (1987) compared 

published data from 13 tidal freshwater marsh systems from the western mid-Atlantic 

coast between the Hudson River, NY and the Altamaha River, GA. They described 

assemblages which, of the numerically dominant species, were comprised of 60% 

freshwater species, 20% anadromous species, 13% estuarine species and 7% marine
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species. Though geographically very close to tidal freshwater, the oligohaline fish 

assemblages were dominated by estuarine and marine forms. Odum (1988) later 

concluded that marine and brackish water species were better equipped to exploit the low 

salinity conditions of the oliogohaline waters than the almost totally freshwater 

conditions of tidal freshwater. Conversely, freshwater species were less able to penetrate 

very far into the higher salinity waters. These observations are consistent with Deaton 

and Greenburg’s (1986) conclusions that severe changes in ionic ratios occur in the range 

of 0-2 ppt and limit the distribution of freshwater species. Remane (1934) first described 

this phenomena, a species minimum occurring near oligohaline salinities, and it has been 

hypothesized as a general feature of strong gradient estuaries and other brackish systems 

such as the Baltic Sea.

Many of the previous works describing estuarine and tidal freshwater fish 

assemblages have focussed on the temporal changes in assemblage structure which 

accompany seasonal shifts in the estuarine environment and are the dominant influence 

on community structure during the late winter and spring months (Rakocinski et al.

1992). In contrast, spatial patterns seem most prevalent during the summer when salinity 

and water temperatures are relatively stable. Largely because of the need to spread 

limited sampling resources over the course of a year, intensive spatial studies are 

relatively rare. Fortunately, the annual juvenile striped bass seine survey conducted by 

the Virginia Institute of Marine Science (VIMS) occurs entirely in late summer and spans 

across the freshwater interface in three sub-estuaries of the lower Chesapeake Bay.

If environmental gradients are biologically meaningful to patterns of species



distributions near the freshwater interface, then a model of longitudinal assemblage 

structure that accounts for Gaussian responses to important gradients should help us to 

understand the dynamics of these species assemblages. A multivariate extension of the 

Gaussian model, correspondence analysis (CA), is appropriate for examining correlations 

between complex environmental gradients and changes in assemblage structure where 

patterns may be complex (Minchen 1987a; Palmer 1993). I applied CA-based techniques 

to investigate patterns of species association and longitudinal zonation of littoral fishes 

along the tidal freshwater to mesohaline gradient in the three sub-estuaries to the lower 

Chesapeake Bay (James, York and Rappahannock River systems). Specifically, the 

following questions are addressed:

(1) What are the primary components of the littoral fish faunas in the Rappahannock, 

York and James River systems below the fall line?

(2) What changes are evident in littoral beach fish assemblages along a longitudinal 

gradient from permanent tidal freshwater to mesohaline environments?

(3) How are patterns in fish assemblage structure related to large-scale and/or local 

environmental gradients?

(4) How do these changes in fish assemblage structure relate to general theories of 

riverine and estuarine community organization?



METHODS AND MATERIALS 

Data Collection

The landscape of eastern Virginia is dominated by three major drainage basins 

which flow into the lower Chesapeake Bay: the James, York and Rappahannock Rivers. 

The tidal freshwater to mesohaline portions of these rivers have been sampled by beach 

seine annually since 1980 as part of the ongoing bay-wide summer juvenile striped bass 

monitoring program (Austin et al. 1996). This study utilized data collected during the 

five-year period 1990-1994.

Field sampling was conducted during five approximately bi-weekly rounds from 

July to mid-September at eighteen index and twenty-two auxiliary stations during 

daylight hours at or near low tide. The 40 sampling stations are shown in Figure 1. 

Twelve stations are located in the Rappahannock River and thirteen are along the James 

River (including two stations in the lower Chickahominy River which are not included in 

this analysis). Fifteen stations are located in the York River system: three in the 

mainstem York, six in the Mattaponi and six in the Pamunkey. Two replicate seine hauls 

are made at each index station, and one seine haul is made at each auxiliary station during 

each round. When two hauls were made, a period of at least 30 minutes was allowed 

between hauls. During this period, fishes captured in the first haul were retained in water 

filled buckets. All fishes were identified to species level, measured to fork-length and 

released upon completion of the station. Species of questionable field identification were 

returned to the lab and identified through the use of dichotomous keys (primarily 

Hildebrand & Schroeder 1972 and Jones et al. 1978).
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Samples were collected with a 100' (30.5 m) long, 4' (1.22 m) deep, 1/4" (6.4 mm) 

bar mesh bagless minnow seine. The seine is set by hand with one end fixed on the 

beach and the other fully extended, perpendicular to the shoreline (or until a depth of 

approximately 4' was encountered). The seine is swept with the current and covers an 

area of approximately 730 m2 (i.e., an approximately quarter-circle area with radius 100'). 

At stations where depth or current prevent full deployment, the distance from shore of the 

set is recorded. All sample abundances were standardized to a swept area of 1000 m2 

prior to classification and ordination analyses. No standardization was performed for 

species diversity calculations.

At each station the following environmental variables were measured using a 

Hydrolab Reporter® water quality instrument; temperature (°C), salinity (ppt), dissolved 

oxygen (mg fi'1) and pH. Sampling time, tidal stage and general weather and 

hydrographic conditions were recorded at the time of each haul. In addition, sediment 

grain size was measured during the summer of 1997. I used a modified Wentworth scale 

to classify the dominant substrate type (Table 1). Conversations with survey personnel 

have confirmed that no significant change in dominant bottom type has occurred since the 

1990-1994 period. Channel width (m; mean lower water), shoal width (m; measured as 

distance to the 6' depth contour at mean lower water) and distance to the bay mouth 

(nautical mile) were also included as covariables. Channel measurements were taken 

from U.S. Geological Survey 7.5' quadrangle maps.
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Data Set Limitations

Beach seines are both species- and size-selective, and it was impossible to adjust 

for this type of selectivity without knowing the specific behavior of most species or the 

true age/size structure of the populations. However, the primary objective of this study is 

to identify the longitudinal distribution of abundance, not its absolute value. Fortunately, 

the family of correspondence analysis techniques utilized in this* study are not reliant on a 

‘true’ estimate of abundance. Rather, the analysis requires information on the 

presence/absence of a species, and its abundance distribution in the data set (i.e., location 

of the abundance peak).

As the statutory emphasis for this monitoring program is the generation of an 

index of relative abundance for juvenile striped bass, non-index stations are occasionally 

missed due to weather, boat failure, etc. To reduce the effect of unequal sample sizes 

between stations, any station which did not have at least 3 of the 5 collections within a 

year was eliminated.

Wilson and Weisberg (1993) analyzed data from ongoing beach seine monitoring 

programs for striped bass in the upper Chesapeake Bay, the Hudson River, and the 

Delaware River, to assess the effects of replicate hauls on index values. They concluded 

multiple hauls were inadvisable for two reasons: 1) repeated samples within a short time 

period are not true replicates; and, 2) when the upper Chesapeake Bay index was 

recalculated using data from the first haul only, there was a higher level of agreement 

with a commercial fishery data set. Therefore, to make index and non-index stations 

more comparable, data from the second tow taken at index stations were discarded.
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Multivariate Analysis of Community Structure

The large, sparse arrays of species counts arising from field community studies 

commonly do not lend themselves to standard statistical tests based on multivariate 

normality (Coull 1985; Field et al. 1987). Instead, a valid and often more revealing 

approach uses informal display methods, such as numerical classification and ordination, 

based on a biologically appropriate definition of similarity between samples (Digby & 

Kempton 1987). Walker et al. (1979) have summarized three general alternative 

approaches to the analysis of such survey data:

(1) a search for patterns among the biological variables with an attempt to interpret 

these in terms of the available environmental data (indirect gradient analysis);

(2) a search for patterns of relationship between the biotic and environmental data 

simultaneously (direct gradient analysis); and,

(3) a search for patterns among the physical variables followed by a search for related 

patterns in the biotic data.

Walker et al. (1979) chose the third approach which may be suitable when one knows in 

advance which physical variables are likely to be dominant, and data are available (e.g., 

pollution effect surveys). Similarly, the second approach is powerful when the important 

environmental covariates are known (or strongly suspected), measured synoptically, and 

extraneous environmental factors are not included. However, as a general approach to the 

analysis of biological survey data, where synoptic environmental data may be sparse, the 

first approach often proves most effective. That is, we analyze the biotic data first,

‘letting the species tell their story’ (Day et al. 1971) and once groups of biotically similar
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samples or stations have been recognized, the environmental variables may be tested for 

statistical differences. This strategy keeps separate the analyses of biotic and 

environmental data, avoiding the influence of any previous assumptions about spatio- 

temporal relationships between the species and their habitats, and minimizing the danger 

of circular argument in seeking to deduce relationships (Field et al 1982).

Separate analyses were performed for each major river system (Rappahannock, 

York, Pamumkey, Mattaponi and James Rivers). Stations in the lower York were used 

with both Pamunkey and Mattaponi stations in separate analyses. Species which 

occurred with a frequency of <3% of the stations (within each river system) were not 

included in the gradient analysis. My specific approach had four major components 

which are expanded upon in the following sections:

(1) Stations and species were classified via two-way indicator species analysis, a

polythetic divisive classification technique based on the correspondence analysis 

algorithm.

(2) Stations and species were ordinated via detrended correspondence analysis. 

Clusters determined in step 1 were superimposed on the station map. Species 

scores were used to determine whether: (a) distinct species assemblages (co­

occurrences) are present; or, (b) species appear independently sorted in physical 

space.
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(3) The statistical association of the station groups and species distributions to 

synoptic environmental data was examined by use of detrended canonical 

correspondence analysis.

(4) Longitudinal species diversity, evenness and richness were investigated across 

sites via standard indices (Shannon-Wiener Diversity, Pielou’s Evenness) and 

rarefaction analysis.

Numerical Classification -- Numerical classification encompasses several 

techniques which attempt to order entities (samples or stations) into groups based upon 

the relationship of their attributes (species) according to mathematical criteria. 

Traditionally, studies of fish communities have relied on cluster analysis to identify 

groups of stations and/or species, usually using an agglomerative algorithm. However, as 

correspondence analysis techniques comprise the core evaluation of the data, Two-Way 

Indicator Species Analysis (Hill 1979), implemented by the computer program 

TWINSPAN, was considered best suited to the main objectives of this work.

In TWINSPAN, the data are first ordinated by correspondence analysis (CA). 

Those species that emphasize the CA axis extremes are then used to polarize the samples, 

and the samples are divided into two clusters by breaking the primary ordination axis near 

its middle. The sample division is refined by a reclassification using those species which 

best indicate the extremes (or poles) of the ordination axis. The division process is then 

repeated on the two sample clusters to give four clusters, and so on. The method ‘...
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constructs a classification of the samples, and then uses this classification to obtain a 

classification of the species according to their ecological preferences. The two 

classifications are then used together to obtain an ordered two-way table that expresses 

the species synecological relations as succinctly as possible’ (Hill 1979). The primary 

outputs of TWINSPAN are hierarchical classifications of stations and species, which may 

be represented as dendrograms, and a sorted community table in which stations and 

species are arranged along the major synthetic gradients extracted from the data. 

Abundance values are not used directly but are converted to a scale based on lower class 

limits (set at 0, 0.1, 1, 2, 5, 10, 20 and 50 individuals per 1000 m2 swept area in this study 

to limit the influence of infrequent large catches of clupeomorph fishes).

Ordination — Associations between stations and species were quantified via 

detrended correspondence analysis (DCA), a widely used nonlinear eigenvector 

ordination technique designed for use with large, multi-species data sets (Hill & Gauch 

1980). The DCA algorithm can be expressed in terms of an eigenanalysis or as a 

‘reciprocal averaging’ approach. It is referred to as reciprocal because site scores and 

species scores are calculated simultaneously. The reciprocal averaging procedure is 

computationally quite simple and the solution has several desirable mathematical 

properties:

(a) The first axis produces a map which incorporates the maximum correlation

between site and species scores (Gauch 1982; Pielou 1984). Second and higher 

axes also have maximal site-species correlation subject to the constraint that axes
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are orthogonal.

(b) Eigenvalues associated with each axis equal the correlation coefficient between 

species scores and site scores (Gauch 1982; Pielou 1984). Thus an eigenvalue 

close to 1 will represent a high degree of correspondence between species and 

sites, and an eigenvalue close to zero will indicated very little correspondence. If 

the fundamental model of species responses to environmental gradients is 

nonlinear and unimodal, as is generally accepted (Austin 1985; Minchen 1987&), 

then high eigenvalues are associated with long and strong environmental gradients 

(Gauch 1982).

The ‘arch effect’ was apparent in the species scores arising from the initial 

correspondence analysis suggesting the need for detrending (Gauch 1982). Detrending 

was accomplished by fitting a second-order polynomial equation to the relationship and 

subtracting its effect (ter Braak 1986). Detrending by second-order polynomials seems to 

avoid the destruction of ecologically meaningful information which may occur when 

detrending by segments, and is recommended for data sets where the arch is most likely 

due to a strong primary gradient (Jongman et al. 1995). The program CANOCO (vers. 

3.12; ter Braak 1988, 1990) was used for all DCA analyses.

To aid in understanding patterns of species distribution, each species used in the 

ordinations was classified into one of six ecological affinity groups (modified from 

McHugh 1967):



Freshwater fishes generally complete their entire life cycle in the upper estuary, 

spawn in freshwater (below 0.5 ppt), and have slight to moderate salinity 

tolerances. Records of most of these fishes in the middle and lower Bay are 

probably transient fish that have washed down from upstream environs.

Diadromous fishes are found in the Bay in large numbers as they pass through on 

their way to fresh or salt water. Estuaries often serve as staging areas for 

anadromous fishes; for example, shad may remain in the estuary for several days 

or weeks before moving upstream. The upper portions of estuaries often serve as 

important nursery areas for the young of the year of many anadromous species 

(e.g., striped bass and American shad). The Chesapeake Bay houses a single 

catadromous species, the American eel (Anguilla rostrata).

Estuarine fishes are those which usually occupy the estuary throughout their 

entire life cycle. They have wide salinity tolerances and the greatest spawning 

activity in the estuary. Often, adults of these species are small and numerous 

(e.g., bay anchovy, killifishes).

Estuarine-Marine fishes are those that usually spend at least one stage of their life 

cycle in the estuary, typically using the Bay as a nursery for the young. They 

usually spawn in nearshore or offshore marine habitats and have wide salinity 

tolerances. Often these species are referred to as ‘estuarine dependent’ (e.g., spot,
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Atlantic croaker).

(5) Marine fishes are commonly or infrequently observed in the lower and middle

reaches of estuaries but do not depend upon them to complete their life cycle.

They generally do not penetrate the Bay farther then the mouth of the Potomac 

River and are primarily distributed in the high salinity reaches near the bay 

mouth. They complete much of their life history in nearshore and offshore marine 

environments and can be important players in estuarine ecosystems, but they are 

more frequently important in the shallow-water marine environment (e.g., inshore 

lizardfish).

Linkage to Environmental Variables — The statistical relationships between 

station groups, species scores and environmental variables were analyzed using detrended 

canonical correspondence analysis (DCCA), a nonlinear eigenvector ordination technique 

designed for the direct analysis of large, noisy ecological data sets with several 

environmental covariables (ter Braak 1986, 1988). The method operates on the species 

abundance and environmental data at the stations, and extracts from the environmental 

variables synthetic gradients (ordination axes) that maximize the niche separation among 

species (ter Braak & Verdonshot 1995). DCCA is an approximation to Gaussian 

regression under a certain set of simplifying assumptions, and is robust to violations of 

those assumptions (ter Braak & Prentice 1988; Palmer 1993). The program CANOCO 

(vers. 3.12; ter Braak 1988, 1990) was used for all DCCA analyses.
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Significance tests for models relating assemblage structure to environmental 

variables were based on Monte Carlo permutation tests (103 permutations) for the sum of 

all eigenvalues. The significance of relationships between ordination axes and individual 

environmental variables was evaluated by /-tests for the inter-set correlations and the 

canonical coefficients (ter Braak 1988, 1990). The weighted average species scores were 

used in all DCCA ordination plots. Spearman rank correlation was used to ascertain the 

degree to which the linear combination (DCCA) and weighted average (DCA) station 

scores ordinations accounted for similar variation. A direct comparison of DCA and 

DCCA eigenvalues was used to indicate the importance of compositional gradients not 

accounted for by measured site variables (Allen & Peet 1990).

Estimation o f Species Diversity Parameters -- The Shannon-Wiener Index 

(Shannon & Weaver 1963), coupled with a measure of evenness, provides a good 

evaluation of community diversity. Although this index has been challenged on 

theoretical grounds (Hurlbert 1971; Goodman 1975), it continues to be widely used as a 

method of inter-site comparison in ecological studies (Magurran 1988). The basic 

formula for the Shannon-Wiener Index {H') is given as:

H '=  -Ep,log/?, (2.1)

where p, is the proportion of the community (abundance) belonging to the z'th species. 

Pielou’s Evenness (J') was used to assess the relative distribution of individuals amongst 

the species (Pielou 1966). This is derived by dividing the observed value of the Shannon-
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w H(S)
J  <2-2)

max

where H(S)max = log S (S is the total number of species recorded).

Patterns in longitudinal numerical species richness (number of species per unit of 

abundance; Kempton 1979) were evaluated via rarefaction, a technique for calculating the 

expected number of species in each sample if all samples were of a standard size (Sanders 

1968). Sander’s formula, as modified by Hurlbert (1971), produces such an estimate:

E(S)=Y, [ l- [ (— )/(-)]] (2.3)n n

where E(S) is the expected number of species in the rarefied sample, n is the standardized 

sample size, N  is the total number of individuals recorded in the sample to be rarified, and 

Nj is the number of individuals in the z'th species in the sample to be rarified. A standard 

unit of 100 individuals was used in this analysis.

The program BIODIV (vers. 5.1) was used for all species diversity calculations 

(Baev & Penev 1995). Species diversity data were fit with a LOWESS line (LOcally 

WEighted Scatterplot Smoother). LOWESS calculates new smoothed y-values for each 

x-value and can help to explore the relationship between two variables without trying to 

fit a specific or predictive model.
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Figure 1: Juvenile striped bass seine survey sampling locations. Numeric portion of

station designations indicated river mile distances from the confluence 

with the Chesapeake Bay. * Chickahominy River stations were not 

included in the analysis.
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Table 1: Nearshore substrate classification system.

Substrate Type Size Class (mm) Code

Silt - Fine Sand <0.25 1.0

Silt-Find Sand/Sand mixed 1.5

Sand 0.25 - 2.0 2.0

Sand/Granule mixed 2.5

Granule 2 .0-4 .0 3.0

Granule/Pebble mixed 3.5

Pebble 4 -6 4 4.0



RESULTS

General Attributes of the Fauna

During the period 1990-1994 a total of 90 species of fishes comprising 117,004 

individuals (first tow only) were collected, of which 31 were represented by 10 or fewer 

individuals. The total number of taxa observed in all collections at a station varied from 

20-35 species. The numerous rare species reflect the high species diversity of the 

Chesapeake Bay system relative to other temperate western Atlantic estuaries. The 

complete ichthyofauna of the Bay system (not including many tidal freshwater species) 

was recently estimated at over 260 species drawn from both tributaries and the mid- 

Atlantic bight (Murdy et al. 1997). In general, two types of fishes were captured by the 

beach seine: (1) juveniles of relatively large migratory species (e.g., Atlantic croaker, 

spot, striped bass); and, (2) adults of relatively small resident species (e.g., silversides, 

anchovies, minnows, etc.). Table 2 provides a general taxonomic summary for all species 

captured.

Clupeiform fishes were the most abundant and widely dispersed taxon with 9 

species occurring in all three drainages and accounting for 29.1% of the total catch. 

Silversides (atherinidae) were also numerous (3 species, 15.8% of the individuals), with 

the Atlantic silverside (Menidia menidia) abundant in saltwater and the inland silverside 

(Menidia beryllina) abundant in freshwater. Juveniles of the moronid species white perch 

(.Morone americanus) and striped bass (Morone saxatilis) were abundant near the 

freshwater interface, with 16.0% of the total individuals. Minnows and shiners 

(cyprinidae) were widely distributed in tidal freshwater with 9 species and 11.8% of the

22
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individuals. Sunfishes and basses (centrarchidae) were also commonly encountered in 

upstream, permanent freshwater regions with 11 species collected. The sciaenidae 

represented 9 species and 7.4% of the individuals, with juveniles of the spot (Leiostomus 

xanthurus) and Atlantic croaker (Micropogonias undulatus) abundant in oligo- and 

mesohaline waters.

The Atlantic menhaden {Brevoortia tyrannus, 14.2%), Atlantic silverside (M 

menidia, 14.2%), white perch (M. americana, 10.6%), hogchoker (Trinectes maculatus, 

9.6%) and spottail shiner (Notropis hudsonius, 8.3%) accounted for 56.9% of the total 

catch and generally present a longitudinal dominance series from mesohaline to tidal 

freshwater reaches of the estuary. Other species were common in particular habitats, and 

perhaps can be regarded as indicators of those habitats. For example, the yellow perch 

{Perea flavescens) and juvenile blue catfish (Ictalurus furcatus) were indicators of pebble 

substrate in the Rappahannock River, while the bluespotted sunfish {Enneacanthus 

gloriosus) was only captured in the Mattaponi River in association with submerged 

aquatic vegetation beds (SAVs).

These relationships and others are described in detail for each river system in the 

following sections. Appendix 1 contains a general guideline for interpreting the 

multivariate plots.
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Table 2: Summary data and ecological affinity group classification for fish species 
captured by the VIMS juvenile striped bass seine survey during the period 1990-1994 (first 
tow only unless otherwise noted).

Order 
Family (no. of species) 

Species
Length Range 

(FL*, mm)
Total Caught Drainage 

(number, rank)
Ecological 

Affmty Group

Myliobatiformes 
Dasyatidae (1) 

Dasyatis centroura 425 1 (64) R Marine-Occasional
Myliobatidae (1) 

Rhinoptera bonasus 1200 1 (64) R Estuarine-Marine

Lepisosteiformes 
Lepisosteidae (1)

Lepisosteus osseus 206 - 490 9 (56) R, Y Freshwater

Elopiformes 
Elopidae (1)

El ops saurus 216 1 (64) J Marine-Occasional

Anguilliformes 
Anguillidae (1) 

Anguilla rostrata 145-614 62 (42) J, R, Y Catadromous

Clupeiformes 
Engraulidae (2) 

Anchoa hepsetus 18 - 100 302 (28) J, R, Y Estuarine-Marine
Anchoa mitchelli 2 0-95 4,530 (9) J, R, Y Estuarine

Clupeidae (7) 
Alosa aestivalis 2 6 -8 4 2,051 (13) J ,R ,Y Anadromous
Alosa pseudoharengus 4 2 -9 2 93 (38) J ,R ,Y Anadromous
Alosa sapidissima 40 - 107 341 (26) J, R, Y Anadromous
Brevoortia tyrannus 32- 196 16,564 (1) J ,R ,Y Estuarine-Marine
Dorosoma cepedianum 26 - 352 6,354 (7) J ,R ,Y Semi-Anadromous
Dorosoma petenense 13 - 176 3,573 (12) J ,R ,Y Semi-Anadromous
Opisthonema oglinum 50 - 126 265 (29) J ,R ,Y Marine-F requent

Aulopiformes 
Synodontidae (1) 

Synodus foetens 53 - 225 143 (34) J, R ,Y Marine-Frequent

Siluriformes 
Ictaluridae (6)

Ameiurus catus 40 - 452 623 (21) J, R, Y Freshwater
Ictalurus fur catus 52 - 270 340 (27) J, R Freshwater
Ictalurus nebulosus 33 -230 9 (56) J, R, Y Freshwater
Ictalurus punctatus 21 -519 769 (20) J, R, Y Freshwater
Noturus gyrinnus 54 1 (64) Y Freshwater
Noturus insignis 75 1 (64) Y Freshwater



Order
Family (no. of species) Length Range Total Caught Drainage Ecological

Species (FL, mm) (number, rank) Affinty Group

Cypriniformes 
Catastomidae (3)

Carpiodes cyprinnus 
Erimyzon oblongus 
Moxostoma macrolepidotum 

Cyprinidae (9)
Cyprinella analostana 
Cyprinnus carpio 
Hybognathus regius 
Nocomis leptocephalus 
Notemigonus chrysoleucas 
Notropis cornutus 
Notropis hudsonius 
Notropis spilopterus 
Semotilus corporalis

Batrachoidiformes 
Batrachoididae (1)

Opsanus tau

Gobisociformes 
Gobisocidae (1)

Gobiesox strumosus

Beloniformes 
Belonidae 

Strongylura marina

Cyprinodontiformes 
Cyprinodontidae (2) 

Cyprinodon variegatus 
Lucania parva 

Fundulidae (3)
Fundulus diaphanus 
Fundulus heteroclitus 
Fundulus majalis 

Poecilidae (1)
Gambusia affinis

Atheriniformes 
Atherinidae (3)

Membras martinica 
Menidia beryllina 
Menidia menidia

Gasterosteiformes 
Syngnathidae (1)

Syngnathus fuscus

41 - 175 16 (51)
172- 173 2 (63)
82-210 16 (51)

33 - 105 1,882 (15)
70 - 694 16 (51)
37-113 2,034 (14)
55 - 176 8 (57)
45 - 155 83 (39)

60 1 (64)
27-116 9,726 (5)

58 1 (64)
62-65 3 (62)

59 - 262 13 (53)

34- 58 9 (56)

75 - 240 77 (40)

20 -4 8 5 (60)
33 1 (64)

22-117 1,210 (17)
25 - 108 3,787 (10)
14- 155 995 (18)

23 -4 7 35 (46)

38-100 195 (31)
25 - 100 1,700 (16)
28-135 16,562 (2)

45 - 160 12 (54)

J Freshwater
Y Freshwater

J,Y Freshwater

J, R, Y Freshwater
J, R Freshwater

J, R, Y Freshwater
J, Y Freshwater

J, R, Y Freshwater
J Freshwater

J, R, Y Freshwater
R Freshwater
R Freshwater

R, Y Estuarine

J, R, Y Estuarine

J, R, Y Estuarine-Marine

R, Y Estuarine
Y Estuarine

J, R, Y Freshwater
J, R, Y Estuarine
J, R, Y Estuarine

R, Y Freshwater

J, R, Y Estuarine
J, R, Y Freshwater
J, R, Y Estuarine

R, Y Estuarine



Order 
Family (no. of species) 

Species
Length Range 

(FL, mm)
Total Caught Drainage 

(number, rank)
Ecological 

Affinty Group

Scorpaeniformes
Triglidae

Prionotus evolans 61-76 2 (63) Y Marine-Frequent
Prionotus tribulus 35-82 4 (61) Y Marine-Occasional

erciformes 10 (55) J, R ,Y Marine-Frequent
Stromateidae (1)

Peprilus alepidotus 2 3-9 0 25 (50) J, R, Y Marine-Frequent
Carangidae (3)

Carawc chrysos 36 1 (64) J Marine-Frequent
Caramc hippos 35 - 185 31 (47) J, R, Y Marine-Frequent
Trachinotus falcatus 4 0-5 2 3 (62) J Marine-Frequent

Scombridae (2)
Scomber japonicus 80 - 106 7 (58) Y Marine-Occasional
Scomberomorous maculatus 73 - 150 26 (49) J, R, Y Marine-Frequent

Mugilidae (2)
Mugil cephalus 33 -400 615 (22) J, R, Y Estuarine-Marine
Mugil curema 38 - 200 846 (19) J, R, Y Estuarine-Marine

Sciaenidae (9)
Bairdiella chrysoura 31 - 130 186 (32) J ,R ,Y Estuarine
Cynoscion nebulosus 30-156 28 (48) R, Y Estuarine-Marine
Cynoscion regalis 30- 111 57 (44) J ,R ,Y Estuarine-Marine
Leiostomus xanthurus 36-236 4,650 (8) J ,R ,Y Estuarine-Marine
Micropogonias undulatus 22 - 263 3,609 (11) J ,R ,Y Estuarine-Marine
Mentichirrus americanus 39-150 140 (36) J, R, Y Marine-Frequent
Mentichirrus saxatilis 52 - 148 3 (62) Y Marine-Frequent
Orthopristus chrysoptera 60 -7 2 5 (60) R Marine-Frequent
Sciaenops oscellatus 48 - 328 7 (58) J, R, Y Estuarine-Marine

Epphididae (1)
Chaetodipterus faber 2 5-78 10 (55) J, R, Y Marine-Frequent

Pomatomidae (1)
Pomatomus saltatrix 50 - 323 75 (41) J ,R ,Y Estuarine-Marine

Gobiidae (1)
Gobisoma bosci 35 1 (64) R Estuarine

Moronidae (2)
Morone americana 23 - 280 12,353 (3) J, R, Y Semi-Anadromous
Morone saxatilis 25 - 520 6,366 (6) J ,R ,Y Anadromous

Percidae (2)
Etheostoma olmstedii 2 8-8 9 602 (23) J, R, Y Freshwater
Perea flavescens 42 - 267 541 (24) J ,R ,Y Freshwater

Gerreidae (1)
Eucinostomus gula 59 1 (64) J Marine-Occasional

Sparidae (1)
Stenotomus chrysops ** 60 - 129 ** ** J Marine-Frequent



Order
Family (no. of species) Length Range Total Caught Drainage Ecological

Species (FL, mm) (number, rank) Affinty Group

Perciformes cont'd
Centrarchidae (11)

Centrarchus macropterus 47 1 (64) J Freshwater
Enneacanthus gloriosus 25-6 8 37 (45) Y Freshwater
Lepomis auritus 25 - 175 369 (25) J ,R ,Y Freshwater
Lepomis gibbosus 38-177 183 (33) J, R ,Y Freshwater
Lepomis gulosus 78 1 (64) R Freshwater
Lepomis macrochirus 25 - 178 208 (30) J, R, Y Freshwater
Lepomis microlophus 71 -204 14 (52) J, R ,Y Freshwater
Lepomis punctatus 53 1 (64) Y Freshwater
Micropterus dolomieu 48- 108 26 (49) J, R, Y Freshwater
Micropterus salmoides 45-315 142 (35) J ,R ,Y Freshwater
Pomoxis nigromaculatus 50- 152 3 (62) J,Y Freshwater

Polynemidae (1)
Polydactylus octonemus 105 1 (64) J Marine-Occasional

Tetraodontiformes 
Tetraodontidae (1)

Sphoeroides maculatus 45 - 148 4 (61) J, R, Y Marine-Frequent

Pleuronectiformes 
Cynoglossidae (1)

Symphurus plagiusa 40-132 101 (37) J ,R ,Y Estuarine
Achiridae (1)

Trinectes maculatus 15 - 159 11,238 (4) J ,R ,Y Estuarine
Paralichthyidae (1)

Paralichthys dentatus 46 - 455 59 (43) J, R, Y Estuarine-Marine

* All lengths are fork length; if the caudal fin is not forked, lengths 
Lengths for rajaform fishes are disk width.

are total length.

** Stenotomus chrysops was only captured in a second tow and is included for 
informational purposes only.
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A total of 67 species of fishes comprising 44,051 individuals were collected (first 

tow only), of which 21 were represented by 5 or fewer individuals, and 38 met the 3% 

capture frequency criterion for inclusion in the gradient analysis.

Spatial Assemblage Patterns (TWINSPAN & DCA) — The first three levels of 

the TWINSPAN classification of all stations clearly reveals the longitudinal salinity 

gradient (Fig. 2), and suggests the presence of six intergrading assemblages of sandy 

beach fishes. The first dichotomy was very strong (eigenvalue 0.62) and separates 

primarily tidal freshwater stations (subset 0) from saline stations (subset 1). At the 

second division level, tidal freshwater stations (subset 0) were subdivided into pebble 

bottoms (Group 1) vs. sandy bottoms (subset 01). Subset 01 separated at the third 

division level into permanent tidal freshwater stations (Group 2) and those stations which 

are infrequently saline (i.e., average salinity < 1 ppt; Group 3). Saline stations (subset 1) 

separated at the second division level into oligohaline stations (Group 4) vs. mesohaline 

stations (subset 11). Subset 11 further separated at the third division level due primarily 

to the limited upstream penetration of a few polyhaline species (Groups 5 and 6). Further 

divisions of Groups 1-6 were not considered as they seemed mainly due to the presence 

of less common species and did not yield distinct groups within the DCA ordination 

space.

The DCA ordination of all stations is presented in Figure 3. Although the 

TWINSPAN groups are generally well defined, many stations in neighboring groups are
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adjacent. Overall, the ordination represents a continuum of riverine beach assemblages. 

The largest separation occurs across the origin of axis 1 and corresponds to the faunal 

break associated with the freshwater interface. Station scores along the first axis were 

generally separated into four regions along the salinity gradient associated with 

permanent tidal freshwater (Groups 1-2), freshwater interface (Group 3), oligohaline 

(Group 4) and mesohaline salinities (Groups 5-6). The eigenvalue (0.61) of the first axis 

suggests the gradient represented by it is highly significant and by far the most important. 

The ecological distance of about 3.7 SD between the permanent tidal freshwater and 

mesohaline station groups indicates that the faunas at the extremities of the estuarine 

gradient were about 93% dissimilar. The second axis has a lower eigenvalue (0.13), is 

relatively short (1.64 SD; 41% dissimilar), and served primarily to separate permanent 

tidal freshwater stations according to nearshore substrate.

Figure 4 shows the DCA ordination of the 38 species from the Rappahannock 

River meeting the first tow 3% frequency criterion for retention. Species symbols 

correspond to the modified ecological affinity groups of McHugh (1967) as defined in the 

Methods and Materials section. The first DCA axis described a longitudinal gradient 

running from permanent tidal freshwater stations to less speciose oligohaline stations and 

finally into the mesohaline reach of the lower estuary. A large faunal break occurs across 

the origin of the first axis (1.6 SD) producing two groups of species: those with negative 

scores (primarily freshwater and diadromous species), and those with positive scores 

(estuarine and marine species).
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Environmental Correlates (DCCA) -- A direct comparison of the distribution of 

constrained (DCCA) and unconstrained (DCA) station scores is given in Table 3. 

Spearman rank correlations indicate that the two ordination methods accounted for 

similar variation. Further support for this interpretation is indicated by similar gradient 

lengths and eigenvalues generated by the two methods. The lower correlation between 

the second axis of DCA and DCCA probably indicates the importance of unmeasured 

variables (or spatial scales), and may be complicated by the relatively large stochasticity 

in abundance and distribution patterns for estuarine vs. freshwater fish assemblages.

The overall ordination was significant (p<0.001) and the first two DCCA axes 

explained 78.8% of the total variance in species-environment relations (Tab. 4). 

Significant correlations and canonical coefficients of species scores on DCCA axis 1 with 

environmental factors indicated that this axis was positively correlated with salinity 

(0.91) and negatively correlated with fluvial distance to the bay mouth (-0.93). A strong 

and unsurprising negative correlation between these two variables was observed. 

However, station groups with similar salinities (Groups 1 & 2; Groups 5 & 6) are 

separated along the second DCA axis implicating salinity as the primary actor in the 

gradient represented by axis 1. Only nearshore substrate grain size was significant on the 

second DCCA axis (-0.67), and largely served to separate pebble from sandy nearshore 

substrates in the permanent tidal freshwater reach of the river. Correlations on the third 

and higher DCCA axes were not considered due to their low eigenvalues.

The arrangement of species scores on DCCA axes 1 and 2 strongly support the 

results derived from TWINSPAN/DCA (Fig. 5). The order of species along the first axis
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corresponds well with the general salinity preferences and tolerances of McHugh’s 

ecological affinity groups; with species scores well ordered from freshwater -► estuarine 

-* marine taxa. The large variation of freshwater resident species along axis 2 probably 

represents small-scale (i.e., 10's - 100's of meters) habitat preferences, particularly with 

respect to nearshore substrate. Other unmeasured variables which have been implicated 

in the distribution of freshwater stream fishes may also be important (e.g., current speed, 

turbidity and the presence of woody debris).

Species-Environment Associations — Specific species associations with 

TWINSPAN station groups are catalogued below and are summarized in Table 5. 

Environmental values for TWINSPAN station groups are summarized in Table 6.

Permanent Tidal Freshwater (Pebble Bottom): This group included 9 stations and 

is derived entirely from samples taken in the permanent tidal freshwater reach of the river 

at stations RA-65 and RA-69 (TWINSPAN Group 1). These stations support primarily 

freshwater (24) and anadromous (5) species with a total of 4,128 individuals and 33 

species collected. The spottail shiner (Notropis hudsonius; 27.3%), gizzard shad 

(Dorosoma cepedianum\ 12.2%), juvenile white perch (Morone americana\ 10.8%), 

inland silverside (Menidia beryllina; 9.8%), blue catfish (Ictalurus furcatus; 7.3%) and 

yellow perch (Perea flavescens\ 6.4%) comprised 73.8% of all individuals captured at 

these sites. This group exhibits a relatively well-defined species composition: it contains 

many of the ubiquitous species found in the other permanent tidal freshwater stations, and 

several characteristic species with high densities and frequencies of occurrence (FOC). 

TWINSPAN identified the gizzard shad (FOC 74%), yellow perch (FOC 90%),
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pumpkinseed {Lepomis gibbosus; FOC 51%) and the American eel {Anguilla rostrata; 

FOC 41%) as indicator species which served to separate these stations from other tidal 

freshwater stations (i.e., TWINSPAN Groups 2 and 3). The spottail shiner (FOC 97%) 

was numerically dominant and the most frequently occurring species. Other widely 

distributed tidal freshwater taxa consistently found at these sites included the juvenile 

white perch (FOC 90%) and the satinfm shiner {Cyprinella analostana; FOC 74%).

Juveniles of the anadromous shads and herrings {Alosa aestivalis, Alosa 

pseudoharengus and Alosa sapidissima) were also centered near the pebble substrate 

stations in permanent tidal freshwater. In Chesapeake Bay tributaries, juvenile alosids are 

distributed widely throughout the water column in tidal freshwater during the spring and 

early summer, but move upstream in late summer with the encroachment of salt water 

(Warinner et al. 1970; Loesch 1987). Therefore, this may represent a concentration of 

individuals above the influence of the salt wedge, and not necessarily a substrate choice.

Permanent Tidal Freshwater tSandv Bottoms!: This group included 11 stations 

(TWINSPAN Group 2), and supports primarily ubiquitous freshwater (24) and 

anadromous species (4) with a total of 5,213 individuals and 35 species collected.

Juvenile white perch {M. americana; 36.8%), spottail shiner {N. hudsonius; 14.1%), 

juvenile striped bass (M saxatilis; 10.8%), the eastern silvery minnow {Hybognathus 

regius; 7.6%), satinfm shiner (C. analostana; 7.6%), the banded killifish {Fundulus 

diaphanus; 7.1%) and the hogchoker {T. maculatus; 5.4%) comprised 89.4% of all 

individuals captured at these sites. Relatively high densities and FOC of the hogchoker 

(FOC 84%) and the banded killifish (FOC 73%) characterized this group in the
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TWINSPAN analysis. The most frequently occurring species were juvenile white perch 

(TOC 93%), juvenile striped bass (FOC 91%) and the spottail shiner (FOC 89%).

Lower Tidal Freshwater fSandv Bottoms'): This group included 13 stations 

(TWINSPAN Group 3), and supports several freshwater (17), diadromous (5), estuarine 

(6) and estuarine-marine (7) species, with a total of 9,804 individuals and 37 species 

collected. Juvenile white perch (M. americana; 20.0%), juvenile striped bass (M. 

saxatilis; 16.9%), spottail shiner (N. hudsonius; 13.0%), juvenile alewife (Alosa 

pseudoharengus ; 11.6%), juvenile Atlantic menhaden (Brevoortia tyrannus; 8.3%), the 

inland silverside (M. beryllina; 3.8%) and the satinfin shiner (C. analostana; 3.3%) 

comprised 76.9% of the total catch. These stations were dominated by low salinity and 

freshwater/anadromous species, yet the TWINSPAN analysis identified juveniles of the 

higher salinity species Atlantic croaker (Micropogonias undulatus; FOC 40%) and spot 

(Leiostomus xanthurus; FOC 32%) as indicator species. The most frequently occurring 

species were juvenile white perch (FOC 95%), juvenile striped bass (FOC 94%), spottail 

shiner (FOC 94%) and the tessellated darter (Etheostoma olmstedi; FOC 81%).

Oligohaline: This group included 13 stations (TWINSPAN Group 4), and 

supports primarily estuarine (9) and estuarine-marine (9) species, although numerous 

freshwater (14) and diadromous (3) species occur in lower numbers. A total of 17,814 

individuals and 40 species were collected. Juvenile Atlantic menhaden (B. tyrannus; 

43.2%), the Atlantic silverside (Menidia menidia; 18.4%), juvenile white perch (M. 

americana; 9.8%), juvenile striped bass (M. saxatilis; 6.2%), the spot (L. xanthurus;

6.2%) and the mummichog (Fundulus heteroclitus; 3.8%) comprised 87.6% of all
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individuals captured at these sites. Though estuarine and estuarine-marine species were 

numerically dominant, the TWINSPAN analysis identified the freshwater interface 

centered species juvenile white perch (FOC 89%) and channel catfish {Ictalurus 

punctatus; FOC 27%) as indicator species. The most frequently occurring species were 

juvenile white perch (FOC 89%), the spot (FOC 86%), the Atlantic silverside (FOC 83%) 

and juvenile striped bass (FOC 74%). Average salinity for the stations in this group was 

3.75 ± 0.34 ppt.

Mesohaline I: This group included 9 stations (TWINSPAN Group 5), and 

supports primarily estuarine (13), estuarine-marine (12) and marine (5) species with a 

total of 15,443 individuals and 36 species collected. Juvenile Atlantic menhaden (B. 

tyrannus; 63.6%), the Atlantic silverside {M. menidia; 20.9%), the bay anchovy {Anchoa 

mitchelli; 6.4%) and the spot {L. xanthurus; 5.1%) comprised 96.0% of all individuals 

captured at these sites. High densities and FOC of the Atlantic silverside (FOC 98%) and 

bay anchovy (FOC 72%) distinguished this group in the TWINSPAN analysis. The spot 

(FOC 84%) was also a regular component of the fish assemblage. Average salinity for 

the stations in this group was 12.42 ± 0.43 ppt.

Mesohaline II: This group included 5 stations (TWINSPAN Group 6; all 

collections from RA-12), and supports primarily estuarine-marine (7), estuarine (9) and 

marine (7) species with a total of 2,557 individuals and 27 species collected. Juvenile 

Atlantic menhaden {B. tyrannus; 38.1%), the spot {L. xanthurus; 32.9%) and the Atlantic 

silverside (M menidia; 13.6%) comprised 84.6% of all individuals captured at this site. 

Relatively high first tow densities and frequency of occurrence of the inshore lizardfish
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(Synodus foetens; FOC 67%) and summer flounder (Paralichthys dentatus\ FOC 33%) 

served to separate these stations from other mesohaline stations in the TWINSPAN 

analysis. The most frequently occurring species were the spot (FOC 96%) and Atlantic 

silverside (FOC 75%). Average salinity for the stations in this group was 14.42 ± 0.55

ppt.

Species Diversity — Rarefied longitudinal species richness (alpha diversity) was 

generally lower in the saline portion of the river, and demonstrated a persistent minimum 

near RA-28 (Fig. 6b). A local minimum was also evident in the tidal freshwater portion 

near RA-60 which may be associated with a lower total sample area (i.e., the species-area 

effect; Fig. 7). Total species richness displayed similar patterns (Fig. 6a); although, the 

upstream increase was less pronounced. This may be partially due to the generally higher 

abundances of the dominant species in mesohaline vs. fresh waters. However, the 

removal of Atlantic menhaden (which represented 60% of the total catch in mesohaline 

waters) had no noticeable effect on the rarefaction curve. Species evenness and diversity 

displayed a similar trend of increasing values moving upstream (Figs. 8 & 9).

Interannual variability in both evenness and diversity were noticeably less in the tidal 

freshwater areas (i.e., above RA-50) suggesting more stable and diverse assemblages 

above the influence of saline waters. Similarly, the highest compositional turnover (beta 

diversity) in the Rappahannock River was observed across the freshwater interface 

between sites RA-37 and RA-55; above and below these sites the rate of change was 

noticeably less (Fig. 10).
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Figure 2: TWINSPAN classification of Rappahannock River stations. Indicator

species for each division are shown in decreasing order of importance. 

Eigenvalues of major divisions are shown in bold under each division. 

Binary numbers above divisions denote major subsets. Smaller font 

numbers below final groups are the number of stations within that group. 

Larger font numbers below brackets are final TWINSPAN group labels. 

Station labels are rivermile-year.
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Figure 3: Axes 1 and 2 of DCA ordination of Rappahannock River stations.

Symbols correspond to TWINSPAN groups. Units are standard deviations 

in species turnover rate.
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Figure 4: Axes 1 and 2 of DCA ordination of the 38 Rappahannock River species

included in the gradient analysis. Symbols correspond to the modified 

ecological groups of McHugh (1967). Species labels are the first f  our 

letters of genus and species names respectively (see Appendix 2 for a 

complete alphabetical list). Units are standard deviations in species 

turnover rate.
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Table 3: Direct comparison of DCA and DCCA axes via Spearman rank correlation 
for the Rappahannock River stations. DCA scores are weighted average scores and 
DCCA scores are linear combination scores predicted from the multiple regression.

Eigenvalue Gradient Length

Ordination Axis DCA DCCA DCA DCCA r 2

1 0.61 0.56 3.73 2.67 0.95 ***

2 0.13 0.10 1.64 1.27 0.66 ***

*** p <  0.001



37

Table 4: Results of the detrended canonical correspondence analysis of fish 
assemblages from the Rappahannock River. Significance values of correlation and 
canonical coefficients correspond to a two-tailed students Mest.

Variable Axis 1 Axis 2

Canonical Coefficients for Environmental Variables

Salinity 0.2178 * 0.0652
Temperature 0.0044 0.0035
Dissolved 0 2 0.0060 -0.0035
PH -0.0587 0.0028
Substrate Grain Size -0.0645 -0.3399 ***
Channel Width 0.1949 -0.2987 ***
6' Contour -0.0048 -0.0494
Distance to Bay Mouth -0.3356 *** -0.0878

Correlations of Environmental Variables with Axes

Salinity 0.9093 *** 0.0040
Temperature -0.4770 *** 0.1117
Dissolved 0 2 0.0561 -0.2131
pH -0.0827 -0.1462
Substrate Grain Size -0.4499 *** -0.6711 ***
Channel Width 0.9124 *** -0.1572
6' Contour 0.3944 *** -0.1503
Distance to Bay Mouth -0.9332 *** 0.0657

Summary Statistics for Ordination Axes

Eigenvalue 0.558 0.098
Species-environment 0.963 0.886

correlation
Cummulative % of species- 67.0 78.8

environment variance
explained

Monte Carlo probability for significance of the sum of
all eigenvalues (103 pemutations): 0.001

*** p < 0.005 ** p < 0.01 p < 0.05



38

Figure 5: Axes 1 and 2 of DCCA ordination of the 38 Rappahannock River species

included in the gradient analysis. Environmental variables are indicated 

with vectors. Only statistically significant variables are included in the 

ordination diagram. Abbreviations are the first four letters in both the 

genus and species names (see Appendix 2 for a complete list).
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Table 5: Dominant and indicator taxa for TWINSPAN groups of Rappahannock 
River stations. Density is mean (+/- 1 standard error) abundance per 1000 m2 swept 
area calculated for all stations included in the TWINSPAN group. FOC = frequency of 
occurence in the stations from the TWINSPAN group. Indicator species are denoted 
with an asterisk.

TWINSPAN
Group

Dominant & Indicator Taxa

Species Density (#/103 m2) FOC Fork Length (mm)

Notropis hudsonius 71.66 (13.09) 0.97 70.17 (0.47)
Dorosoma cepedianum * 29.50 (10.51) 0.74 78.16 (1.76)
Morone americana 27.84 (3.72) 0.90 91.73 (1.30)
Menidia beryllina 22.47 (8.55) 0.54 66.43 (0.25)
Ictalurus furcatus 19.02 (5.99) 0.59 119.18 (2.59)
Perea jlavescens * 17.70 (2.89) 0.90 106.50 (1.96)
Cyprinella analostana 12.32 (2.79) 0.74 61.09 (0.75)
Hybognathus regius 8.60 (2.97) 0.67 68.36 (1.12)
Alosa aestivalis 5.30 (1.97) 0.38 49.56 (0.54)
Etheostoma olmstedii 4.81 (0.94) 0.64 67.75 (1.03)
Morone saxatilis 4.66 (0.80) 0.72 64.88 (3.44)
Trinectes maculatus 3.50 (0.80) 0.64 53.61 (1.73)
Lepomis gibbosus * 3.20 (1.23) 0.51 111.59 (2.47)
Ictalurus punctatus 2.52 (0.50) 0.54 150.59 (10.48)
Alosa pseudoharengus 2.30 (0.97) 0.26 61.24 (1.64)
Lepomis macrochirus 1.77 (0.47) 0.41 75.00 (7.29)
Anguilla rostrata * 1.45 (0.37) 0.41 208.74 (5.65)
Fundulus diaphanus 1.07 (0.30) 0.31 62.47 (2.63)

Morone americana 160.85 (28.81) 0.93 64.60 (0.62)
Notropis hudsonius 63.01 (12.61) 0.89 69.43 (0.63)
Morone saxatilis 46.35 (8.55) 0.91 54.61 (0.56)
Cyprinella analostana 38.68 (8.82) 0.82 58.67 (0.48)
Hybognathus regius 36.71 (12.09) 0.60 63.68 (0.72)
Fundulus diaphanus * 32.60 (5.92) 0.73 65.88 (0.57)
Trinectes maculatus * 22.91 (5.45) 0.84 44.25 (0.88)
Menidia beryllina 11.69 (4.61) 0.53 63.43 (0.77)
Etheostoma olmstedii 5.23 (1.00) 0.53 67.10 (1.02)

Morone saxatilis 44.62 (8.14) 0.94 57.51 (0.58)
Notropis hudsonius 36.50 (4.87) 0.94 68.1 (0.97)
Morone americana 31.40 (5.95) 0.95 70.99 (0.78)
Alosa aestivalis 27.35 (13.42) 0.37 50.48 (0.12)
Hybognathus regius 16.00 (7.42) 0.47 67.08 (0.56)
Cyprinella analostana 9.40 (1.82) 0.61 56.45 (0.55)
Menidia beryllina 7.04 (1.13) 0.74 62.76 (0.62)
Etheostoma olmstedii 6.35 (0.90) 0.81 66.47 (0.49)
Trinectes maculatus 5.53 (2.09) 0.60 57.16 (1.50)
Micropogonias undulatus * 4.52 (1.10) 0.40 105.22 (1.01)
Leiostomus xanthurus * 2.58 (0.76) 0.32 101.70 (1.80)
Ictalurus punctatus 2.46 (0.47) 0.55 140.87 (9.99)



TWINSPAN --------------
Group Species

Dom inant & Indicator Taxa

Density (#/103 m2) FOC Fork Length (mm)

3 Fundulus diaphanus 2.00 (0.61) 0.40 65.67 (1.25)
cont'd Dorosoma cepedianum 1.67 (0.60) 0.26 116.57 (7.84)

Fundulus heteroclitus 1.30 (0.30) 0.34 61.00 (1.49)

4 Brevoortia tyrannus 131.37 (59.14) 0.41 92.68 (0.11)
Menidia menidia 48.75 (11.93) 0.83 65.18 (0.13)
Morone americana * 28.82 (4.08) 0.89 80.99 (1.14)
Leiostomus xanthurus 16.64 (2.88) 0.86 88.46 (1.30)
Micropogonias undulatus 15.06 (3.41) 0.59 103.25 (0.74)
Morone saxatilis 14.96 (4.08) 0.74 59.35 (0.79)
Fundulus heteroclitus 10.70 (3.35) 0.50 60.09 (0.48)
Anchoa mitchelli 4.78 (1.48) 0.44 55.28 (0.47)
Membras martinica 2.47 (1.23) 0.24 83.33 (0.81)
Trinectes maculatus 1.52 (0.45) 0.26 54.01 (1.42)
Dorosoma cepedianum 1.03 (0.28) 0.32 173.49 (10.87)
Ictalurus punctatus * 0.69 (0.17) 0.27 242.16 (22.88)

5 Brevoortia tyrannus 264.80 (151.20) 0.42 81.74 (0.14)
Menidia menidia * 109.30 (28.74) 0.98 68.22 (0.17)
Anchoa mitchelli * 28.55 (7.03) 0.72 55.43 (0.43)
Leiostomus xanthurus 21.86 (4.01) 0.84 102.47 (2.16)
Micropogonias undulatus 5.50 (1.48) 0.44 123.49 (2.66)
Anchoa hepsetus 2.72 (1.30) 0.33 71.36 (1.79)
Fundulus majalis 1.30 (0.41) 0.33 101.38 (3.76)
Morone americana 1.08 (0.55) 0.26 180.47 (6.70)
Synodus foetens 0.59 (0.19) 0.23 123.54 (7.54)

6 Leiostomus xanthurus 60.23 (17.40) 0.96 106.47 (0.68)
Brevoortia tyrannus 55.53 (52.12) 0.25 100.81 (0.29)
Menidia menidia 20.41 (9.15) 0.75 70.15 (0.42)
Anchoa hepsetus 5.62 (2.93) 0.33 62.16 (1.15)
Synodus foetens * 3.57 (0.87) 0.67 120.28 (14.52)
Trinectes maculatus 2.80 (1.26) 0.33 96.86 (1.44)
Anchoa mitchelli 2.64 (1.33) 0.33 56.07 (0.92)
Micropogonias undulatus 2.40 (0.94) 0.33 149.65 (3.97)
Fundulus majalis 1.37 (0.68) 0.25 111.63 (2.55)
Paralicthys dentatus * 0.78 (0.25) 0.33 162.46 (15.09)
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Table 6: Average environmental values by TWINSPAN group for stations from the 
Rappahannock River. Quantitative variables are mean ± one standard error. Channel 
measurements are given as a range.

TWINSPAN
Group

Salinity
(PPO

Temperature
(°C)

Dissolved 0 2 
(mg r1)

pH

1 0.00 + 0.00 27.95 + 0.37 7.14 + 0.19 7.58 + 0.10

2 0.00 + 0.00 28.09 + 0.31 6.27 + 0.14 7.40 + 0.07

3 0.45 + 0.11 27.89 + 0.27 7.00 + 0.16 7.31 + 0.14

4 3.75 + 0.34 27.43 + 0.28 6.75 t  0.15 7.22 + 0.09

5 12.42 + 0.43 26.31 + 0.37 6.51 + 0.19 7.38 + 0.08

6 14.42 + 0.55 26.84 + 0.59 6.67 + 0.28 7.60 + 0.09

Nearshore
Sediment

6f Contour 
(m)

Distance to Bay 
Mouth (Nm)

SAV Beds

1 Pebble 72-178 82.78 - 87.43 No

2 Sand-Granule 16-27 72.88 -93.98 No

3 Sand-Granule 16-1231 62.18 -72.88 No

4 Sand-Granule 161 - 1231 46.18-2.18 No

5 Sand 343 - 485 39.08-6.18 No

6 Sand 288 29.98 No
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Figure 6: Total (a) and rarefied (b) longitudinal species richness in the 

Rappahannock River, 1990-94. Rarefied values are fit with a LOWESS 

curve.
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Figure 7: Total species captured and total area swept for Rappahannock River

stations, 1990-1994.
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Figure 8: Longitudinal species evenness (Pielou’s) in the Rappahannock River,

1990-1994, fit with a LOWESS curve.
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Figure 9: Longitudinal species diversity (Shannon-Wiener) in the Rappahannock

River, 1990-1994, fit with a LOWESS curve.
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Figure 10: Longitudinal species turnover (beta diversity) in the Rappahannock River, 

1990-94. Units are standard deviations in species turnover per nautical 

mile from the DCA ordination of all stations.
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A total of 65 species of fishes comprising 20,827 individuals were collected (first 

tow only), of which 22 were represented by 5 or fewer individuals, and 38 met the 3% 

capture frequency criterion for inclusion in the gradient analysis.

Spatial Assemblage Patterns — The TWINSPAN classification of all stations 

generally reflects a longitudinal riverine gradient (Fig. 11), and suggests the presence of 

five intergrading assemblages of sandy beach fishes. The first dichotomy was very strong 

(eigenvalue 0.65) and separates tidal freshwater stations (subset 0) from saline stations 

(subset 1). Subset 0 separated at the second division level into coarser vegetated bottoms 

(Group 1) vs. sandy bottoms (Group 2) in the permanent tidal freshwater reach of the 

Mattaponi River. At the second division level for saline stations, subset 11 (mesohaline 

stations) separated from oligohaline stations (Group 3). Subset 11 further separated at the 

third division level due primarily to the limited upstream penetration of a few polyhaline 

species (Groups 4a and 4b). Further divisions of Groups 1-4 were not considered as they 

seem mainly due to the presence of uncommon species and did not yield distinct groups 

within the DCA ordination space.

The DCA ordination of all stations is presented in Figure 12. The major 

TWINSPAN groups are well defined and form a continuum, with some clustering, and 

stronger separation between groups across the freshwater interface. Station scores along 

the first axis are generally separated into three regions along the salinity gradient 

associated with tidal freshwater (Groups 1-2) and oligohaline (Group 3) stations in the
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Mattaponi River, and mesohaline stations (Groups 4a-b) in the York River below the 

confluence at West Point, VA. The eigenvalue of the first axis (0.63) suggests the 

gradient represented by it was highly significant. The ecological distance of 3.88 SD 

between the most upstream and downstream groups indicates that the faunas at the 

extremities of the estuarine gradient were about 97% dissimilar. The second axis had a 

lower eigenvalue (0.16), is relatively short (1.71 SD; 43% dissimilar), and appears to 

primarily to separate the tidal freshwater stations longitudinally according to the presence 

of SAVs and/or coarser bottoms.

Figure 13 shows the DCA ordination of the 38 species from the York and 

Mattaponi Rivers which met the first tow 3% frequency criterion for retention. Species 

symbols correspond to the modified ecological affinity groups of McHugh (1967) as 

defined in the Methods and Materials section. Species scores were aligned in a 

longitudinal pattern similar to the station scores. Dispersion along the first ordination 

axis is truncated in permanent tidal freshwater, indicating the presence of a longitudinal 

salinity gradient, with species scores generally well ordered from freshwater -* estuarine 

-* marine taxa. Freshwater species scores are largely dispersed along the second 

ordination axis in a longitudinal series from sandy to coarse/vegetated bottoms.

Environmental Correlates (DCCA) — A direct comparison of the distribution of 

constrained (DCCA) and unconstrained (DCA) station scores is given in Table 7. 

Spearman rank correlations indicate that the two ordination methods accounted for 

similar variation. Further support for this interpretation is indicated by the similar 

gradient lengths and eigenvalues generated by the two methods. The high rank
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correlation between the second axis of DCA and DCCA (0.84) is driven by the 

categorical vegetation variable (presence/absence of SAV). SAV’s are only present at 

MP-52, and this tends to polarize the second DCCA axis. When SAV is not included as a 

variable, the rank correlation falls to 0.48.

The overall ordination was significant (p<0.001) and the first two DCCA axes 

explained 65.9% of the total variance in the species-environment relations (Tab. 8). 

Significant correlations and canonical coefficients of species scores on DCCA axis 1 with 

environmental factors indicated that this axis was positively correlated with salinity 

(0.87), distance to the bay mouth (-0.94), channel width (0.70) and shoal width (0.50). 

These variables tend to be highly intercorrelated as salinity, channel width and shoal 

width all tend to decrease with increasing distance from the bay mouth. However, the 

truncation of the range of axis 1 scores for freshwater species (Fig. 14) suggests salinity is 

the primary actor. The presence of SAV’s (0.52) and nearshore substrate grain size (0.45) 

were significant on the second DCCA axis, and served to primarily separate collections 

from MP-52 (SAV’s, sand & pebble substrates) from downstream freshwater stations (no 

SAV’s, sandy substrate). Correlations on third and higher DCCA axes were not 

considered due to their low eigenvalues.

The arrangement of species scores on DCCA axes 1 and 2 strongly support the 

results derived from TWINSPAN and DCA (Fig. 14). The order of species scores along 

the first axis corresponds well with the general salinity preferences and tolerances of 

McHugh’s ecological affinity groups; with species well ordered from freshwater -► 

estuarine -► marine taxa. Freshwater taxa are spread primarily on the second axis, with a
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few noticeable features. Though widely dispersed in tidal freshwater, three cyprinids 

(spottail shiner, satinfin shiner and eastern silvery minnow), the banded killifish, juvenile 

American shad {Alosa sapidissima) and juvenile channel catfish form a fairly tight group 

of fishes commonly found over sandy bottoms in tidal freshwater. Other freshwater 

species, particularly the blue-spotted sunfish (.Enneacanthus gloriosus) and juvenile 

yellow perch, are centered well upstream due to their high abundances in the SAV beds at 

MP-52.

Species-Environment Associations -- Specific species associations with 

TWINSPAN station groups are catalogued below and are summarized in Table 9. 

Environmental values for TWINSPAN groups are summarized in Table 10.

Tidal Freshwater ICoarse & Vegetated Bottom"): This group included 6 stations 

(TWINSPAN Group 1; five are MP-52), and supports primarily freshwater species (26).

A total of 35 species and 2,349 individuals were collected. The hogchoker (T. maculatus; 

22.6%), the spottail shiner (N. hudsonius; 19.2%), the banded killifish (F. diaphanus; 

10.8%), the yellow perch {P. flavescens; 7.0%), the eastern silvery minnow (H. regius; 

6.0%) and the redbreast sunfish {Lepomis auritus; 5.4%) accounted for 71.0% of all 

individuals captured at these sites. Relatively large catches of the tessellated darter (FOC 

58%) characterized this group in the TWINSPAN analysis. The most frequently 

occurring species were the banded killifish (FOC 96%), hogchoker (FOC 85%), spottail 

shiner (FOC 85%), redbreast sunfish (FOC 77%) and satinfin shiner (FOC 77%).

Frequent catches of yellow perch (FOC 73%), largemouth bass {Micropterus salmoides; 

FOC 54%) and the blue-spotted sunfish (FOC 50%) also served to distinguish these sites
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from other downstream freshwater stations.

Tidal Freshwater fSandv Bottomsh This group included 15 stations (TWINSPAN 

Group 2), and supports primarily freshwater (17), estuarine (8) and diadromous (4) fishes 

with a total of 36 species and 3,601 individuals captured. The spottail shiner (N. 

hudsonius; 28.5%), juvenile striped bass (M saxatilis; 20.8%), the hogchoker (T. 

maculatus', 12.6%), the eastern silvery minnow (H. regius; 8.6%), juvenile white perch 

(M americana; 8.0%) and the satinfin shiner (C. analostana; 7.0%) accounted for 85.5% 

of all individuals captured at these sites. TWINSPAN identified juvenile striped bass 

(FOC 90%) as an indicator species. Other frequently occurring species were the spottail 

shiner (FOC 86%), hogchoker (FOC 61%) and satinfin shiner (FOC 58%). Most of the 

tidal freshwater reach of the Mattaponi River study area was included in this group.

Oligohaline: This group included 9 stations (TWINSPAN Group 3), and supports 

primarily estuarine fishes (8 species, 79.5% individuals), although several freshwater (12) 

and estuarine-marine (5) species occur less frequently. A total of 33 species and 3,405 

individuals were collected. The hogchoker (T. maculatus; 39.0%), mummichog (F. 

heteroclitus; 14.9%), the bay anchovy (A. mitchelli; 8.1%), the Atlantic silverside (M 

menidia; 7.0%), juvenile white perch (M. americana; 6.2%), juvenile Atlantic menhaden 

(B. tyrannus; 5.5%) and juvenile striped bass (M. saxatilis; 5.2%) accounted for 85.9% of 

all individuals captured at these sites. TWINSPAN failed to identify a strong indicator 

species for this group. The most frequently occurring species were the hogchoker (FOC 

95%), mummichog (FOC 84%), juvenile striped bass (FOC 84%) and juvenile white 

perch (FOC 73%). All of the stations in this group occurred above the confluence with
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the York River. The average salinity for this group was 3.66 ± 0.43 ppt.

Mesohaline I: This group included 10 stations (TWINSPAN Group 4a), and 

supports primarily estuarine (13), estuarine-marine (12) and marine (7) species with a 

total of 9,089 individuals and 37 species collected. The hogchoker (T. maculatus;

42.4%), mummichog (F. heteroclitus; 15.8%), the Atlantic croaker (M. undulatus;

13.0%), the spot (L. xanthurus; 10.9%) and the Atlantic silverside (M menidia; 6.5%) 

accounted for 88.6% of all individuals captured at these sites. TWINSPAN identified the 

striped killifish (Fundulus majalis; FOC 83%) as an indicator species for both mesohaline 

assemblages. The other most frequently occurring species included the spot (FOC 94%), 

hogchoker (FOC 88%), Atlantic croaker (FOC 83%), Atlantic silverside (FOC 79%) and 

the mummichog (FOC 77%). The average salinity for this group was 13.14 ± 0.47 ppt.

Mesohaline II: This group included 5 stations (TWINSPAN Group 4b; four are 

from YK-15), and supports primarily estuarine (10), estuarine-marine (9) and marine (5) 

species with a total of 2,383 individuals and 27 species collected. The Atlantic silverside 

(M menidia; 51.9%), mummichog (F. heteroclitus; 25.0%) and the spot (L. xanthurus; 

8.4%) accounted for 85.2% of all individuals captured at these sites. Relatively moderate 

to high standardized densities and FOC of several ubiquitous estuarine species 

characterized this group in the gradient analysis. Particularly, the Atlantic silverside 

(FOC 88%), spot (FOC 68%), striped killifish (FOC 64%), and the inshore lizardfish 

(FOC 64%). The average salinity at these sites was 15.41 ± 0.48 ppt.

Species Diversity — Rarefied species richness showed a slight increase moving 

from the saline to tidal freshwater portions of the river system, with a falloff where the
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York River divides, and a distinct peak at station MP-52 (Fig. 15b). Total species 

richness differed somewhat from the rarefaction curve and showed a marked increase at 

stations YK-21 and YK-28 (Fig. 15a). This increase appears due to the increased capture 

of relatively rare higher salinity species (e.g., Atlantic thread herring, Atlantic spadefish, 

northern kingfish) associated with a greater total sample area (i.e., the species-area effect; 

Fig. 16). The most notable features of the curves are a decrease in total species richness 

at YK-15, and a peak at MP-52. This peak was a result of the recruitment of many 

freshwater species to the SAV bed’s found at this station. Species evenness and diversity 

displayed a similar trend of increasing values moving upstream, with a local falloff near 

the river fork above river mile 28 (Figs. 17 & 18) Interannual variability in both 

evenness and diversity was high all along the study area. The highest compositional 

turnover (beta diversity) along the York-Mattaponi River was observed across the 

freshwater interface between sites MP-33 and MP-41; above and below these sites the 

rate of change was generally less (Fig. 19). A large increase also occurs at MP-52, 

primarily due to the high species richness associated with SAV beds.



53

Figure 11: TWINSPAN classification of York-Mattaponi River stations. Indicator

species for each division are shown in decreasing order of importance. 

Eigenvalues of major divisions are shown in bold under each division. 

Binary numbers above divisions denote major subsets. Smaller font 

numbers below final groups are the number of stations within that group 

Larger font numbers below brackets are final TWINSPAN group labels. 

Station labels are rivermile-year.
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Figure 12: Axes 1 and 2 of DC A ordination of York-Mattaponi River stations. 

Symbols correspond to TWINSPAN groups. Units are standard deviations 

in species turnover rate.
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Figure 13: Axes 1 and 2 of DC A ordination of the 38 York-Mattaponi River species

included in the gradient analysis. Symbols correspond to the modified 

ecological groups of McHugh (1967). Species labels are the first f  our 

letters of genus and species names respectively (see Appendix 2 for a 

complete alphabetical list). Units are standard deviations in species 

turnover rate.
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Table 7: Direct comparison of DC A and DCCA axes via Spearman rank correlation 
for the York-Mattaponi River stations. DC A scores are weighted average scores and 
DCCA scores are linear combination scores predicted from the multiple regression.

Eigenvalue Gradient Length

Ordination Axis DCA DCCA DCA DCCA r 2

1 0.63 0.61 3.88 3.71 0.96 ***

2 0.16 0.12 1.71 1.20 0.84 ***

*** p  <  0.001
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Table 8: Results of the detrended canonical correspondence analysis of fish 
assemblages from the York-Mattaponi River. Significance values of correlation and 
canonical coefficients correspond to a two-tailed students /-test.

Variable Axis 1 Axis 2

Canonical Coefficients for Environmental Variables

Salinity 0.4102 *** -0.0030
Temperature 0.0597 0.0690
Dissolved 0 2 -0.0186 0.0926
PH -0.0054 -0.0674
Substrate Grain Size -0.0766 -0.2548
Channel Width -1.3757 *** -3.1694 ***
6' Contour 0.7192 *** 1.4767 ***
Distance to Bay Mouth -1.3851 *** -2.5620 ***
Presence of SAV 0.1266 1.6420 ***

Correlations of Environmental Variables with Axes

Salinity 0.8673 *** -0.1162
Temperature -0.2735 0.1292
Dissolved 0 2 -0.0728 -0.0334
PH 0.4647 *** -0.1659
Substrate Grain Size -0.1909 0.4474 **
Channel Width 0.6993 *** -0.1919
6' Contour 0.5030 *** -0.0735
Distance to Bay Mouth -0.9378 *** 0.1476
Presence of SAV -0.5591 *** 0.5237 ***

Summary Statistics for Ordination Axes

Eigenvalue 0.607 0.117
Species-environment 0.982 0.885

correlation
Cummulative % of species- 55.3 65.9

environment variance
explained

Monte Carlo probability for significance of the sum of
all eigenvalues (103 pemutations): 0.001

*** p <  0.005 ** p < 0.01 * p < 0.05
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Figure 14: Axes 1 and 2 of DCCA ordination of the 38 York-Mattaponi River species

included in the gradient analysis. Environmental variables are indicated 

with vectors. Only statistically significant variables are included in the 

ordination diagram. Abbreviations are the first four letters in both the 

genus and species names (see Appendix 2 for a complete list).
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Table 9: Dominant and indicator taxa for TWINSPAN groups of York and Mattaponi 
River stations. Density is mean (+/- 1 standard error) abundance per 1000 m2 swept 
area calculated for all stations included in the TWINSPAN group. FOC = frequency of 
occurence in the stations from the TWINSPAN group. Indicator species are denoted 
with an asteriks.

TWINSPAN
Group

Dominant & Indicator Taxa

Species Density (#/103 m2) FOC Fork Length (mm)

Trinectes maculatus 79.18 (28.51) 0.85 40.99 (0.58)
Notropis hudsonius 43.93 (17.12) 0.85 62.30 (0.57)
Fundulus diaphanus 25.33 (4.28) 0.96 58.39 (0.66)
Perea flavescens 15.18 (2.98) 0.73 95.32 (3.25)
Hybognathus regius 13.63 (6.62) 0.54 75.85 (1.28)
Lepomis auritus 12.08 (2.57) 0.77 89.67 (3.25)
Alosa sapidissima 11.62 (4.41) 0.46 57.88 (1.08)
Etheostoma olmstedi * 10.71 (3.53) 0.58 47.93 (1.42)
Cyprinella analostana 9.57 (1.97) 0.77 59.81 (0.80)
Morone americana 9.53 (2.13) 0.69 83.40 (3.77)
Lepomis gibbosus 6.48 (1.50) 0.58 99.34 (3.61)
Micropterus salmoides 4.70 (1.10) 0.54 112.75 (4.96)
Enneacanthus gloriosus 3.51 (1.15) 0.50 46.43 (1.65)
Lepomis macrochirus 2.02 (1.25) 0.31 55.25 (7.88)
Morone saxatilis 1.91 (0.60) 0.38 84.75 (4.58)
Fundulus heteroclitus 0.86 (0.37) 0.23 51.33 (5.74)

Notropis hudsonius 55.79 (10.13) 0.86 72.64 (0.40)
Morone saxatilis * 40.60 (7.09) 0.90 61.91 (0.74)
Trinectes maculatus 23.40 (5.31) 0.61 51.22 (0.64)
Hybognathus regius 16.86 (6.15) 0.42 60.64 (0.89)
Morone americana 15.37 (4.40) 0.53 67.06 (2.24)
Cyprinella analostana 13.10 (2.07) 0.58 59.41 (0.54)
Alosa sapidissima 9.23 (2.42) 0.35 66.48 (0.82)
Fundulus diaphanus 4.90 (1.32) 0.32 59.60 (0.81)
Lepomis auritus 3.13 (0.66) 0.32 105.64 (3.97)
Fundulus heteroclitus 2.15 (0.68) 0.21 52.54 (1.81)
Menidia beryllina 1.42 (0.32) 0.15 59.52 (1.54)

Trinectes maculatus 158.38 (39.78) 0.95 49.76 (0.31)
Fundulus heteroclitus 58.75 (21.86) 0.84 53.79 (0.40)
Anchoa mitchelli 26.60 (13.86) 0.41 54.46 (0.47)
Menidia menidia 23.13 (6.44) 0.36 65.14 (0.38)
Morone americana 22.92 (6.24) 0.73 69.29 (2.76)
Morone saxatilis 18.92 (3.51) 0.84 65.24 (1.79)
Leiostomus xanthurus 13.36 (4.28) 0.50 72.73 (1.57)
Brevoortia tyrannus 10.98 (8.02) 0.09 118.33 (1.00)
Ameiurus catus 9.08 (3.67) 0.36 96.15 (2.57)
Micropogonias undulatus 6.77 (2.14) 0.36 106.87 (2.61)
Dorosoma cepedianum 4.07 (3.01) 0.16 132.93 (11.01)
Paralichthys dentatus 1.84 (0.65) 0.23 121.87 (15.43)



TWINSPAP
Group

* Dominant & Indicator Taxa

Species Density (#/103 m3) FOC Fork Length (mm)

4a Trinectes maculatus 109.93 (21.94) 0.88 54.82 (0.15)
Fundulus heteroclitus 40.95 (10.08) 0.77 62.25 (0.32)
Micropogonias undulatus 33.62 (7.78) 0.83 108.84 (0.54)
Leiostomus xanthurus 28.39 (4.80) 0.94 91.12 (0.55)
Menidia menidia 16.78 (3.38) 0.79 66.87 (0.45)
Anchoa mitchelli 8.05 (2.51) 0.69 58.16 (0.36)
Fundulus majalis * 7.16 (1.15) 0.83 83.95 (1.54)
Morone saxatilis 2.28 (0.45) 0.56 72.35 (3.12)
Symphurus plagiusa 2.05 (0.33) 0.60 90.74 (2.48)
Mentichirrus americanus 1.74 (0.87) 0.21 81.95 (2.18)
Synodus foetens 1.23 (0.33) 0.40 107.93 (5.13)
Cynoscion regalis 1.11 (0.40) 0.23 63.74 (2.33)
Brevoortia tyrannus 1.00 (0.50) 0.17 80.31 (5.45)
Bairdiella chrysoura 0.88 (0.33) 0.23 59.10 (3.67)
Anchoa hepsetus 0.83 (0.23) 0.33 68.62 (1.58)

4b Menidia menidia 67.80 (35.10) 0.88 7.91 (0.17)
Fundulus heteroclitus 32.60 (11.98) 0.60 72.39 (0.36)
Leiostomus xanthurus 10.90 (2.64) 0.68 108.95 (0.76)
Fundulus majalis * 5.25 (1.73) 0.64 94.56 (2.19)
Trinectes maculatus 3.19 (0.97) 0.56 71.47 (1.42)
Anchoa hepsetus 2.96 (0.87) 0.56 66.19 (1.23)
Synodus foetens 1.69 (0.32) 0.64 106.57 (5.23)
Anchoa mitchelli 1.26 (0.52) 0.24 58.83 (2.12)
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Table 10: Average environmental values by TWINSPAN group for stations from the 
York and Mattaponi Rivers. Quantitative variables are mean ± one standard error. 
Channel measurements are given as a range.

TWINSPAN
Group

Salinity
(PPO

Temperature
(°C)

Dissolved 0 2 
(mg r1)

pH

1 0.18 + 0.13 27.77 + 0.42 5.21 + 0.15 6.44 + 0.12

2 0.40 + 0.08 27.24 + 0.20 5.08 + 0.07 6.44 + 0.06

3 3.66 + 0.43 27.21 + 0.21 4.52 + 0.11 6.56 + 0.06

4a 13.14 + 0.47 26.45 + 0.31 5.84 + 0.15 7.09 + 0.08

4b 15.41 + 0.48 26.66 + 0.52 6.61 + 0.28 7.44 + 0.15

Nearshore
Sediment

6' Contour 
(m)

Channel Width 
(m)

SAV Beds

1 Sand-Pebble 18-96 180- 384 Yes*

2 Sand-Silt 10-20 162-202 No

3 Sand-Granule 10-18 162-228 No

4a Sand 72 - 365 1800 - 3516 No

4b Sand 72 - 360 1800 - 3516 No

t Five of six stations have SAV’s in Group 1. Only tows from MP-52.
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Figure 15: Total (a) and rarefied (b) longitudinal species richness in the York and 

Mattaponi Rivers, 1990-94. Rarefied species richness is fit with a 

LOWESS curve.
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Figure 16: Total species captured and total area swept for York-Mattaponi River

stations, 1990-1994.
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Figure 17: Longitudinal species evenness (Pielou’s) in the York and Mattaponi

Rivers, 1990-1994, fit with a LOWESS curve.
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Figure 18: Longitudinal species diversity (Shannon-Wiener) in the York and

Mattaponi Rivers, 1990-1994, fit with a LOWESS curve.
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Figure 19: Longitudinal species turnover (beta diversity) in the York-Mattaponi 

River, 1990-94. Units are standard deviations in species turnover per 

nautical mile from the DCA ordination of all stations.
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York-Pamunkey River Community Patterns
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A total of 64 species of fishes comprising 21,834 individuals were collected (first 

tow only), of which 20 were represented by 5 or fewer individuals, and 35 met the 3% 

capture frequency criterion for inclusion in the gradient analysis.

Spatial Assemblage Patterns (TWINSPAN and DC A) — The TWINSPAN 

classification of all stations generally reflects a longitudinal riverine gradient (Fig. 20), 

and suggests the presence of six intergrading assemblages of sandy beach fishes. The 

first dichotomy is strong (eigenvalue 0.55) and separates tidal freshwater stations (subset 

0) from saline stations (subset 1). At the second division level, subset 0 was subdivided 

into a longitudinal series of tidal freshwater stations with separation between upstream 

(Group 1; PM-55 & PM-61) and downstream (subset 01) stations. Subset 01 separated at 

the third division level into two groups of tidal freshwater stations (Groups 2 and 3) based 

on the upstream penetration of several higher salinity taxa. Saline stations (subset 1) 

separated at the second division level into oligohaline (Group 4) and mesohaline (subset 

11) groups. Subset 11 further divided at the third division level into two mesohaline 

station groups: Group 5a (primarily YK-21 and YK-28) and Group 5b (primarily YK-15). 

Further divisions of Groups 1-5 were not considered as they seemed mainly due to the 

presence of less common species and did not yield distinct groups within the DCA 

ordination space.

The DCA ordination of all stations is presented in Figure 21. The TWINSPAN 

groups are reasonably distinct; however, many stations in neighboring groups are



67

adjacent. Overall, the ordination represents a continuum of intergrading assemblages.

The faunal break associated with the freshwater interface (origin of the first axis) was 

relatively indistinct in this river system vs. the James or Rappahannock. Station scores 

along the first axis were generally separated along the salinity gradient into tidal 

freshwater (Groups 1-3) and oligohaline (Group 4) stations in the Pamumkey River, and 

mesohaline stations (Groups 5a & 5b) in the York River below the confluence at West 

Point, VA. The eigenvalue of the first axis (0.56) suggests the gradient represented by it 

was highly significant. The ecological distance of 3.59 SD along the first axis indicates 

that the faunas at the extremities of the estuarine gradient were approximately 90% 

dissimilar. The second axis had a lower eigenvalue (0.13), is relatively short (1.85 SD; 

46% dissimilar), and appears to primarily separate the permanent tidal freshwater stations 

along the riverine gradient.

Figure 22 shows the DCA ordination of the 35 species from the York and 

Pamunkey Rivers which met the first tow 3% frequency criterion for retention. Species 

symbols correspond to the modified ecological affinity groups of McHugh (1967) as 

defined in the Methods and Materials section. Species scores were generally aligned in a 

longitudinal pattern similar to the station scores. The dispersion of species centered in 

permanent tidal freshwater was truncated, indicating the presence of a longitudinal 

salinity gradient. Species scores were generally well ordered from freshwater -► estuarine 

-► marine species. The faunal break at the freshwater interface (origin of axis 1) is more 

evident in the species plot then the station plot. Freshwater species were largely 

dispersed along the second ordination axis in a longitudinal series moving upstream.
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Environmental Correlates (DCCA) — A direct comparison of the distribution of 

constrained (DCCA) and unconstrained (DCA) station scores is given in Table 11. 

Spearman rank correlations indicate the ordination methods accounted for similar 

variation. Further support for this interpretation is indicated by the similar gradient 

lengths and eigenvalues generated by the two methods. The lower correlation between 

the second axis of DCA and DCCA (0.72) may indicate the importance of unmeasured 

variables (or spatial scales).

The overall ordination was significant (p<0.001) and the first two DCCA axes 

explained 64.8% of the total variance in the species-environment relations (Tab. 12). 

Significant correlations and canonical coefficients of species scores on DCCA axis 1 with 

environmental factors indicated that this axis was positively correlated with salinity 

(0.86), channel width (0.77) and shoal width (0.66), all of which tend to decrease moving 

upstream. The first axis was also negatively correlated with distance to the bay mouth (- 

0.96). Nearshore sediment grain size (0.67) was positively correlated with the second 

DCCA axis and served primarily to separate upstream (sand with some pebbles) from 

downstream (sandy) freshwater collections. Correlations on third and higher DCCA axes 

were not considered due to their low eigenvalues.

The arrangement of species scores on DCCA axes 1 and 2 support the results 

derived from TWINSPAN and DCA (Fig. 23). The order of species scores along the first 

axis corresponds well with the general salinity preferences and tolerances of McHugh’s 

ecological affinity groups; species were well order from freshwater -> estuarine -► marine 

taxa. Freshwater taxa were centered primarily along the second axis with one notable
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exception. The white catfish (Ameiurus catus) was commonly observed at oligohaline 

stations below the freshwater interface.

Species-Environment Associations — Specific species associations with 

TWINSPAN groups are catalogued below and are summarized in Table 13. 

Environmental values for TWINSPAN groups are summarized in Table 14.

Tidal Freshwater I: This group included 9 stations (TWINSPAN Group 1) and 

supports primarily freshwater (22) and diadromous (5) species. A total of 33 species and 

2,677 individuals were collected. The spottail shiner (N. hudsonius; 40.0%), hogchoker 

(T. maculatus; 14.3%), the eastern silvery minnow {H. regius; 8.4%), the satinfin shiner 

(C. analostana; 5.4%), the redbreast sunfish (L. auritus; 5.2%) and juvenile striped bass 

(M saxatilis; 4.8%) accounted for 78.1% of all individuals captured at these sites. 

Relatively frequent catches of the redbreast sunfish (FOC 82%) characterized this group 

in the TWINSPAN analysis. Other frequently occurring species included the spottail 

shiner (FOC 91%), satinfin shiner (FOC 82%), hogchoker (FOC 76%), bluegill (Lepomis 

macrochirus; FOC 70%) and the banded killifish (FOC 67%). These stations are far 

upstream in the Pamunkey River and are frequented by several centrarchid species 

indicative of more stable freshwater environments (e.g., redbreast sunfish, bluegill and 

pumpkinseed).

Tidal Freshwater II: This group included 6 stations (TWINSPAN Group 2), and 

supports primarily freshwater (17) and estuarine (7) species with a total of 29 species and 

1,645 individuals captured. The spottail shiner (N. hudsonius; 48.6%), juvenile striped 

bass (M. saxatilis’, 14.8%) and the hogchoker (T. maculatus’, 14.0%) comprised 77.4% of
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all individuals captured at these sites. TWINSPAN identified the tessellated darter (FOC 

50%) as an indicator species. The most frequently occurring species were the spottail 

shiner (FOC 93%), juvenile striped bass (FOC 79%), hogchoker (FOC 71%) and the 

banded killifish (FOC 64%). This species assemblage was typical of tidal freshwater, 

sandy bottom environments common in the lower Pamunkey River.

Tidal Freshwater III: This group included 7 stations (TWINSPAN Group 3), and 

supports primarily freshwater (15), estuarine (6) and anadromous (4) species with a total 

of 30 species and 1,891 individuals captured. The spottail shiner (N. hudsonius; 27.4%), 

juvenile striped bass ( M. saxatilis; 23.1%), hogchoker (T. maculatus; 14.8%), juvenile 

white perch (M americana; 11.1%) and the mummichog (F. heteroclitus; 5.6%) 

accounted for 82% of all individuals collected at these sites. TWINSPAN identified the 

Atlantic croaker (FOC 32%), mummichog (FOC 51%) and juvenile striped bass (FOC 

95%) as indicator species. Other frequently occurring species included the spottail shiner 

(FOC 86%), hogchoker (FOC 73%) and juvenile white perch (FOC 73%). This group is 

very similar to the Tidal Freshwater II stations, however, higher salinity species more 

commonly occurred at these sites (e.g., Atlantic croaker, spot).

Oligohaline: This group included 8 stations (TWINSPAN Group 4), and supports 

primarily estuarine fishes (7 species; 77.5% individuals), although several freshwater 

(11), estuarine-marine (7) and diadromous (4) species routinely occur in fewer numbers.

A total of 31 species and 4,149 individuals were captured. The hogchoker (T. maculatus; 

38.0%), bay anchovy (A. mitchelli; 19.6%), juvenile white perch (M americana; 9.8%), 

the white catfish A. catus; 8.3%), juvenile striped bass (M saxatilis; 6.1%) and the



mummichog (F. heteroclitus; 4.9%) accounted for 86.7% of all individuals collected at 

these sites. TWINSPAN failed to identify a strong indicator species for this group. The 

most frequently occurring species were the hogchoker (FOC 100%), mummichog (FOC 

89%), juvenile striped bass (FOC 81%), bay anchovy (FOC 78%), juvenile white perch 

(FOC 73%), spot (FOC 70%) and white catfish (FOC 68%). All of the stations in this 

group occurred above the confluence with the York River. The average salinity for this 

group was 2.67 + 0.42 ppt.

(NOTE: The next two groups are identical to Groups 4 a and 4b from o f the York- 

Mattaponi analysis.)

Mesohaline I: This group included 10 stations (TWINSPAN Group 5a), and 

supports primarily estuarine (13), estuarine-marine (12) and marine (7) species with a 

total of 9,089 individuals and 37 species collected. The hogchoker (T. maculatus; 

42.4%), mummichog (F. heteroclitus; 15.8%), the Atlantic croaker (M. undulatus; 

13.0%), the spot (L. xanthurus; 10.9%) and the Atlantic silverside (M. menidia; 6.5%) 

accounted for 88.6% of all individuals captured at these sites. TWINSPAN identified the 

striped killifish (FOC 83%) as an indicator species for both mesohaline assemblages.

The other most frequently occurring species included the spot (FOC 94%), hogchoker 

(FOC 88%), Atlantic croaker (FOC 83%), Atlantic silverside (FOC 79%) and the 

mummichog (FOC 77%). The average salinity for this group was 13.14 ± 0.47 ppt.

Mesohaline II: This group included 5 stations (TWINSPAN Group 5b; four are
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from YK-15), and supports primarily estuarine (10), estuarine-marine (9) and marine (5) 

species with a total of 2,383 individuals and 27 species collected. The Atlantic silverside 

(M menidia; 51.9%), mummichog (F. heteroclitus; 25.0%) and the spot (L. xanthurus; 

8.4%) accounted for 85.2% of all individuals captured at these sites. Relatively moderate 

to high standardized densities and FOC of several ubiquitous estuarine species 

characterized this group in the gradient analysis. Particularly, the Atlantic silverside 

(FOC 88%), spot (FOC 68%), striped killifish (FOC 64%), and the inshore lizardfish 

(FOC 64%). The average salinity at these sites was 15.41 ± 0.48 ppt.

Species Diversity — Rarefied species richness showed a slight increase moving 

from the saline to tidal freshwater portions of the river system (Fig. 24b). Total species 

richness differed from the rarefaction curve, showing a general decline moving upstream, 

with marked local increases at stations YK-21, YK-28 and PM-55 (Fig.24a). Each of 

these increases appear due to the increased capture of rare species associated with a 

greater total sample area (i.e., the species-area effect; Fig. 25). The most notable feature 

of these curves is the low total species richness at station YK-15. Species evenness and 

diversity displayed similar trends with values generally increasing moving upstream 

(Figs. 26 & 27). Interannual variability in both evenness and diversity were high 

throughout the study area. The highest compositional turnover (beta diversity) along the 

York-Pamunkey River was observed across the freshwater interface near station PM-42; 

above and below this site the rate of change was generally less (Fig. 28).



73

Figure 20: TWINSPAN classification of York-Pamunkey River stations. Indicator

species for each division are shown in decreasing order of importance. 

Eigenvalues of major divisions are shown in bold under each division. 

Binary numbers above divisions denote major subsets. Smaller font 

numbers below final groups are the number of stations within that group 

Larger font numbers below brackets are final TWINSPAN group labels. 

Station labels are rivermile-year.
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Figure 21: Axes 1 and 2 of DCA ordination of York-Pamunkey River stations. 

Symbols correspond to TWINSPAN groups. Units are standard deviations 

in species turnover rate.
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Figure 22: Axes 1 and 2 of DCA ordination of the 35 York-Pamunkey River species

included in the gradient analysis. Symbols correspond to the modified 

ecological groups of McHugh (1967). Species labels are the first f  our 

letters of genus and species names respectively (see Appendix 2 for a 

complete alphabetical list). Units are standard deviations in species 

turnover rate.
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Table 11: Direct comparison of DCA and DCCA axes via Spearman rank correlation 
for the York-Pamunkey River stations. DCA scores are weighted average scores and 
DCCA scores are linear combination scores predicted from the multiple regression.

Eigenvalue Gradient Length

Ordination Axis DCA DCCA DCA DCCA r 2

1 0.56 0.52 3.59 2.15 0.97 ***

2 0.13 0.10 1.85 1.32 0.72 ***

*** p <0.001
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Table 12: Results of the detrended canonical correspondence analysis of fish 
assemblages from the York-Pamunkey River. Significance values of correlation and 
canonical coefficients correspond to a two-tailed students Mest.

Variable Axis 1 Axis 2

Canonical Coefficients for Environmental Variables

Salinity 0.2826 *** 0.2118 *
Temperature 0.0015 -0.1294 ***
Dissolved 0 2 0.0075 -0.0497
pH -0.0101 -0.0358
Substrate Grain Size 0.0521 0.2181 ***
Channel Width -0.5949 *** -0.6647 ***
6' Contour 0.2947 *** 0.1501
Distance to Bay Mouth -0.7840 *** -0.3065 ***

Correlations of Environmental Variables with Axes

Salinity 0.8642 *** -0.0908
Temperature -0.3129 * -0.1894
Dissolved 0 2 0.4028 ** -0.3696 *
PH 0.1107 -0.2161
Substrate Grain Size -0.3623 * 0.6865 ***
Channel Width 0.7681 *** -0.2659
6' Contour 0.6317 *** -0.2220
Distance to Bay Mouth -0.9634 *** 0.1301

Summary Statistics for Ordination Axes

Eigenvalue 0.523 0.097
Species-environment 0.984 0.912

correlation
Cummulative % of species- 54.6 64.8

environment variance
explained

Monte Carlo probability for significance of the sum of
all eigenvalues (103 pemutations): 0.001

*** p <  0.005 ** p < 0.01 * p < 0.05
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Figure 23: Axes 1 and 2 of DCCA ordination of the 35 York-Pamunkey River species

included in the gradient analysis. Environmental variables are indicated 

with vectors. Only statistically significant variables are included in the 

ordination diagram. Abbreviations are the first four letters in both the 

genus and species names (see Appendix 2 for a complete alphabetical list).
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Table 13: Dominant and indicator taxa for TWINSPAN groups of York and 
Pamunkey River stations. Density is mean (+/- 1 standard error) abundance per 1000 
m2 swept area calculated for all stations included in the TWINSPAN group. FOC = 
frequency of occurence in the stations from the TWINSPAN group. Indicator species 
are denoted with an asteriks.

TWINSPAN
Group

Dominant & Indicator Taxa

Species Density (#/103 m2) FOC Fork Length (mm)

Notropis hudsonius 62.33 (22.75) 0.91 60.93 (0.51)
Trinectes maculatus 42.05 (13.14) 0.76 46.09 (2.41)
Cyprinella analostana 29.79 (9.33) 0.82 55.79 (0.49)
Lepomis auritus * 18.13 (3.55) 0.82 85.06 (6.29)
Lepomis macrochirus 12.89 (3.68) 0.70 76.92 (3.03)
Hybognathus regius 12.67 (6.04) 0.42 63.11 (0.78)
Fundulus diaphanus 11.44 (4.24) 0.67 57.63 (1.10)
Morone saxatilis 10.67 (2.72) 0.61 71.79 (2.10)
Etheostoma olmstedi 6.84 (2.23) 0.48 49.88 (1.66)
Fundulus heteroclitus 4.20 (2.26) 0.33 61.55 (1.21)
Ictalurus punctatus 3.17 (1.15) 0.30 177.24 (5.93)
Morone americana 2.92 (1.02) 0.36 154.49 (17.89)
Menidia beryllina 2.80 (1.36) 0.39 56.38 (2.20)
Lepomis gibbosus 2.69 (0.90) 0.33 97.05 (4.16)

Notropis hudsonius 102.58 (21.08) 0.93 61.95 (0.41)
Morone saxatilis 40.55 (12.72) 0.79 66.80 (1.31)
Trinectes maculatus 28.05 (7.61) 0.71 47.85 (1.02)
Anchoa mitchelli 8.03 (4.36) 0.32 47.22 (1.87)
Fundulus diaphanus 7.15 (1.72) 0.64 51.98 (1.73)
Morone americana 5.38 (1.52) 0.46 88.88 (7.16)
Cyprinella analostana 4.50 (1.42) 0.50 56.88 (1.02)
Etheostoma olmstedi * 3.01 (0.72) 0.50 52.68 (1.68)
Menidia beryllina 3.01 (1.17) 0.32 53.05 (2.82)
Ictalurus punctatus 2.45 (0.91) 0.29 162.67 (20.86)
Hybognathus regius 2.12 (0.63) 0.36 83.82 (2.88)
Dorosoma cepedianum 1.35 (0.53) 0.25 169.69 (25.93)

Notropis hudsonius 73.79 (17.62) 0.86 68.15 (0.49)
Morone saxatilis * 63.04 (12.46) 0.95 61.89 (0.99)
Trinectes maculatus 42.58 (11.07) 0.73 51.43 (0.69)
Morone americana 30.59 (8.42) 0.73 59.31 (2.14)
Fundulus heteroclitus * 20.41 (6.76) 0.51 59.08 (0.91)
Hybognathus regius 10.34 (3.36) 0.38 65.70 (1.52)
Fundulus diaphanus 8.48 (3.10) 0.38 68.37 (11.32)
Leiostomus xanthurus 6.64 (3.09) 0.30 78.81 (2.77)
Micropogonias undulatus * 3.33 (1.13) 0.32 98.77 (4.38)
Menidia beryllina 3.30 (1.05) 0.30 60.86 (1.36)
Ictalurus punctatus 1.78 (0.57) 0.27 167.75 (40.22)
Cyprinella analostana 1.61 (0.58) 0.22 56.36 (2.05)



TWINSPAN --------------
Group Species

Dominant & Indicator Taxa

Density (#/l 03 m2) FOC Fork Length (mm)

Trinectes maculatus 146.17 (27.45) 1.00 47.80 (0.31)
Anchoa mitchelli 62.46 (17.49) 0.78 57.59 (0.22)
Morone americana 35.89 (10.97) 0.73 63.03 (1.24)
Ameiurus catus 31.26 (11.06) 0.68 77.66 (1.64)
Morone saxatilis 22.35 (5.35) 0.81 63.45 (1.45)
Fundulus heteroclitus 16.94 (3.24) 0.89 55.00 (0.65)
Micropogonias undulatus 13.07 (4.40) 0.54 102.86 (1.98)
Leiostomus xanthurus 9.56 (2.13) 0.70 82.42 (1.72)
Notropis hudsonius 8.01 (2.87) 0.35 68.59 (1.18)
Bairdiella chrysoura 7.91 (3.22) 0.35 88.09 (1.75)
Brevoortia tyrannus 1.67 (1.22) 0.05 115.44 (2.20)
Menidia menidia 1.54 (0.66) 0.19 67.00 (1.50)
Menidia beryllina 1.22 (0.42) 0.24 61.08 (2.16)
Dorosoma cepedianum 0.96 (0.51) 0.19 133.55 (32.33)
Ictalurus punctatus 0.55 (0.26) 0.14 88.13 (9.84)

Trinectes maculatus * 109.93 (21.94) 0.88 54.82 (0.15)
Fundulus heteroclitus 40.95 (10.08) 0.77 62.25 (0.32)
Micropogonias undulatus * 33.62 (7.78) 0.83 108.84 (0.54)
Leiostomus xanthurus 28.39 (4.80) 0.94 91.12 (0.55)
Menidia menidia 16.78 (3.38) 0.79 66.87 (0.45)
Anchoa mitchelli 8.05 (2.51) 0.69 58.16 (0.36)
Fundulus majalis * 7.16 (1.15) 0.83 83.95 (1.54)
Morone saxatilis 2.28 (0.45) 0.56 72.35 (3.12)
Symphurus plagiusa 2.05 (0.33) 0.60 90.74 (2.48)
Mentichirrus americanus 1.74 (0.87) 0.21 81.95 (2.18)
Synodus foetens 1.23 (0.33) 0.40 107.93 (5.13)
Cynoscion regalis 1.11 (0.40) 0.23 63.74 (2.33)
Brevoortia tyrannus 1.00 (0.50) 0.17 80.31 (5.45)
Bairdiella chrysoura 0.88 (0.33) 0.23 59.10 (3.67)
Anchoa hepsetus 0.83 (0.23) 0.33 68.62 (1.58)

Menidia menidia 67.80 (35.10) 0.88 7.91 (0.17)
Fundulus heteroclitus 32.60 (11.98) 0.60 72.39 (0.36)
Leiostomus xanthurus 10.90 (2.64) 0.68 108.95 (0.76)
Fundulus majalis * 5.25 (1.73) 0.64 94.56 (2.19)
Trinectes maculatus 3.19 (0.97) 0.56 71.47 (1.42)
Anchoa hepsetus 2.96 (0.87) 0.56 66.19 (1.23)
Synodus foetens 1.69 (0.32) 0.64 106.57 (5.23)
Anchoa mitchelli 1.26 (0.52) 0.24 58.83 (2.12)
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Table 14: Average environmental values by TWINSPAN group for stations from the 
York and Pamunkey Rivers. Quantitative variables are mean ± one standard error. 
Channel measurements are given as a range.

TWINSPAN
Group

Salinity
(PPt)

Temperature
(°C)

Dissolved 0 2 
(mg r1)

pH

1 0.00 + 0.00 27.60 + 0.44 5.16 + 0.15 6.91 + 0.11

2 0.13 + 0.08 26.35 + 0.47 5.58 + 0.21 6.84 + 0.13

3 0.17 + 0.06 27.96 + 0.32 5.83 + 0.12 7.04 + 0.11

4 2.67 + 0.42 27.15 + 0.33 5.46 + 0.11 6.73 + 0.09

5a 12.99 + 0.44 26.32 + 0.30 5.92 + 0.16 7.09 + 0.08

5b 15.61 + 0.54 26.90 + 0.54 6.29 + 0.30 7.41 + 0.18

Nearshore
Sediment

6f Contour 
(m)

Channel 
Width (m)

SAV Beds

1 Sand/Pebble 32-48 108 -456 No

2 Sand/Pebble 12-48 192-456 No

3 Sand/Mud 12-18 192-286 No

4 Mud/Sand 16-43 192-458 No

5a Sand 72 - 365 1800- 3516 No

5b Sand 72 - 360 1800- 3516 No
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Figure 24: Total (a) and rarefied (b) longitudinal species richness in the York and 

Pamunkey Rivers, 1990-94. Rarefied species richness is fit with a 

LOWESS curve.



Nu
m

be
r 

of 
Sp

ec
ie

s

Longitudinal Species Richness
(York-Pamunkey River)

35

25

15

5

10 20 30 40 50 60

Fluvial Distance (Nm)



82

Figure 25: Total species captured and total area swept for York-Pamunkey River

stations, 1990-1994.
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Figure 26: Longitudinal species evenness (Pielou’s) in the York and Pamunkey

Rivers, 1990-1994, fit with a LOWESS curve.
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Figure 27: Longitudinal species diversity (Shannon-Wiener) in the York and

Pamunkey Rivers, 1990-1994, fit with a LOWESS curve.
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Figure 28: Longitudinal species turnover (beta diversity) in the York-Pamunkey 

River, 1990-94. Units are standard deviations in species turnover per 

nautical mile from the DC A ordination of all stations.
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James River Community Patterns

A total of 65 species of fishes comprising 46,362 individuals were collected (first 

tow only), of which 26 were represented by 5 or fewer individuals, and 38 met the 3% 

capture frequency criterion for inclusion in the gradient analysis.

Spatial Assemblage Patterns (TWINSPAN and DC A) — The TWINSPAN 

classification of all stations generally reflects a longitudinal riverine gradient (Fig. 29), 

and suggests the presence of six intergrading assemblages of sandy beach fishes. The 

first dichotomy is very strong (eigenvalue 0.50) and separates high salinity stations 

(subset 1) from tidal freshwater and oligohaline stations (subset 0). At the second 

division level, subset 1 was subdivided into low mesohaline (Group 5) vs. high 

mesohaline (Group 6) mean salinities. Subset 0 separated at the second division level 

into silty permanent tidal freshwater stations above the confluence with the Appomattox 

River at Hopewell, VA (Group 1) and the sandy tidal freshwater and oligohaline waters 

below Hopewell (subset 01). Subset 01 separated at the third division level into tidal 

freshwater stations (subset 010) and oligohaline stations (Group 4). Subset 010 further 

divided at the fourth division level into two permanent tidal freshwater groups (Groups 2 

and 3). Further divisions of groups 1-6 were not considered as they seemed mainly due 

to the presence of less common species and did not yield distinct groups within the DCA 

ordination space.

The DCA ordination of all stations is presented in Figure 30. TWINSPAN groups 

below the freshwater interface are relatively well defined (Groups 4-6) while many
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stations in neighboring groups above the interface are adjacent. Overall, the ordination 

represents a continuum of riverine beach assemblages. The largest separation occurs 

across the origin of axis 1 and corresponds to the faunal break associated with the 

freshwater interface. Interestingly, the oligohaline stations (Group 4) straddle this faunal 

break, due primarily to the relatively high abundances and frequencies of occurrence of 

freshwater species. Station scores along the first axis were generally separated into three 

regions along the salinity gradient associated with permanent tidal freshwater (Groups 1- 

3), transition to oligohaline salinities at the interface (Group 3), and mesohaline salinities 

(Groups 5 and 6). The eigenvalue of the first axis (0.54) suggests the gradient 

represented by it is very significant. The ecological distance of approximately 3.5 SD 

along the estuarine gradient indicates the faunas at the extremities of the sample reach 

were about 88% dissimilar. The second axis has a lower eigenvalue (0.18), is relatively 

short (2.02 SD; 51% dissimilar), and served primarily to separate downstream from 

upstream permanent tidal freshwater stations.

Figure 31 shows the DCA ordination of the 38 species from the James River 

collections meeting the first tow 3% frequency criterion for retention. Species symbols 

correspond to the modified ecological affinity groups of McHugh (1967) as defined in the 

Methods and Materials section. The first DCA axis is divided into two regions near the 

origin typified by species with negative scores (primarily freshwater and diadromous 

forms), and those with positive scores (estuarine and marine forms). Freshwater species 

with scores in the permanent tidal freshwater reach of the river are spread along the 

second axis, while estuarine and marine forms are dispersed along both axes.



Environmental Correlates (DCCA) — A direct comparison of the distribution of 

constrained (DCCA) and unconstrained (DCA) station scores is given in Table 15. 

Spearman rank correlations indicate that the two ordination methods accounted for 

similar variation. Further support for this interpretation is indicated by the similar 

gradient lengths and eigenvalues generated by the two methods. The lower correlation 

between the second axis of DCA and DCCA (0.46) indicates the importance of 

unmeasured variables (or spatial scales).

The overall ordination was significant (p<0.001) and the first two DCCA axes 

explained 65.9% of the total variance in the species-environment relations (Tab. 16). 

Significant correlations and canonical coefficients of species scores on DCCA axis 1 with 

environmental factors indicated that this axis was positively correlated with salinity 

(0.92) and shoal width (0.93), and negatively correlated with fluvial distance to the bay 

mouth (-0.93). A strong and unsurprising correlation between salinity and shoal width 

was observed as both shoal width and salinity tend to decrease with movement upstream. 

Similarly, these variables were both negatively correlated with fluvial distance to the bay 

mouth. Nearshore substrate grain size was significant on the second DCCA axis (-0.49) 

and served primarily to separate muddy from sandy stations in the permanent tidal 

freshwater reach of the river. Dissolved oxygen was also significantly negatively 

correlated with the second DCCA axis (-0.29), although its low coefficient makes its 

importance suspect. The average dissolved oxygen content in the James River was 6.83 ± 

0.09 mg H'\ and the lowest measurement was 3.60 mg It1, above the generally accepted 

acute stress level of 2.0 mg It1. Correlations on the third and higher DCCA axes were not
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considered due to their low eigenvalues.

The arrangement of species scores on DCCA axes 1 and 2 strongly support the 

results derived from TWINSPAN and DCA (Fig. 32). The order of species scores along 

the first axis corresponds well with the general salinity preferences and tolerances of 

McHugh’s ecological affinity groups; with species scores well ordered from freshwater -> 

estuarine -► marine taxa. The large variation of freshwater resident species along the 

second axis may represent small-scale (i.e., 10's-100's of meters) habitat preferences, or 

simple longitudinal succession into more stable, upstream environments.

Species-Environment Associations -- Specific species associations with 

TWINSPAN station groups are catalogued below and are summarized in Table 17. 

Environmental values for TWINSPAN station groups are summarized in Table 18.

Tidal Freshwater I: This group included 14 stations (TWINSPAN Group 1) and is 

derived entirely from the upstream, permanent tidal freshwater reach of the sample area 

above the confluence with the Appomattox River (stations JA-68 (except 1992), JA-74 

and JA-78). These stations support primarily freshwater (23) and diadromous (5) species 

with a total of 3,721 individuals and 34 species collected. The blueback herring (Alosa 

aestivalis; 20.0%), spottail shiner (N. hudsonius; 16.3%), juvenile threadfin shad 

(Dorosomapetenense; 14.0%), juvenile white perch (M americana; 13.7%), satinfin 

shiner (C. analostana; 7.4%), gizzard shad (D. cepedianum; 7.1%), juvenile striped bass 

(M saxatilis; 6.0%) and the eastern silvery minnow (H regius; 5.8%) comprised 90.3% 

of all individuals captured at these sites. Large total catch of the blueback herring (FOC 

25%) characterized this group in the TWINSPAN analysis. However, the more
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ubiquitous juvenile striped bass (FOC 71%), juvenile white perch (FOC 70%) and the 

spottail shiner (FOC 60%) were the most frequently occurring species. Rare catches of 

freshwater obligate species such as the bluehead chub (Nocomis leptocephalus), the 

smallmouth bass (Micropterus dolomieu) and the quillback (Carpiodes cyprinnus) also 

served to distinguish the upstream collections from other permanent tidal freshwater 

stations.

Tidal Freshwater II: This group included 10 stations (TWINSPAN Group 2), and 

supports primarily freshwater (18) and estuarine (6) species with a total of 12,480 

individuals and 32 species collected. The gizzard shad (D. cepedianum; 34.1%), juvenile 

striped bass (M americana; 24.3%), juvenile threadfin shad (D. petenense; 17.2%) and 

the hogchoker (T. maculatus; 12.4%) comprised 88.0% of all individuals captured at 

these sites. TWINSPAN identified the satinfin (FOC 58%) and golden (Notemigonus 

chrysoleucas; FOC 28%) shiners as indicator species. The most frequently occurring 

species were juvenile white perch (FOC 96%), the spottail shiner (FOC 94%) and 

juvenile striped bass (FOC 92%). Eight of the ten stations are collections taken from JA- 

46 and JA-56, sites with sandy bottoms, close proximity to submerged woody debris piles 

and relatively steep drop-offs to deeper water.

Tidal Freshwater III: This group included 9 stations (TWINSPAN Group 3), and 

supports primarily freshwater (18), estuarine (6) and estuarine-marine (6) species with a 

total of 4,293 individuals and 34 species collected. The spottail shiner (N. hudsonius; 

33.7%), juvenile white perch (M. americana; 23.4%), juvenile striped bass (M saxatilis; 

10.3%) and the inland silverside (M. beryllina; 8.3%) comprised 75.7% of all individuals



91

captured at these sites. TWINSPAN identified the second most frequently occurring 

species, the hogchoker (FOC 91%), as an indicator species. Other frequently occurring 

species included juvenile white perch (FOC 100%), spottail shiner (FOC 81%), gizzard 

shad (FOC 79%) and channel catfish (FOC 74%).

Oligohaline: This group included 7 stations (TWINSPAN Group 4), and supports 

primarily estuarine (5) and estuarine-marine (8) species, though many freshwater species 

(14) occur in low numbers. A total of 2,580 individuals and 32 species were collected. 

Juvenile striped bass (M. americana; 29.8%), the Atlantic croaker (M. undulatus; 23.6%), 

juvenile striped bass (M saxatilis; 13.4%) and the spottail shiner (N. hudsonius; 7.6%) 

comprised 74.4% of all individuals captured at these sites. TWINSPAN identified the 

Atlantic croaker (FOC 68%) and the rough silverside (FOC 22%) as indicator species.

The most frequently occurring species were juvenile striped bass (FOC 100%) and white 

perch (FOC 100%), the spottail shiner (FOC 92%) and the inland silverside (FOC 70%). 

The low salinity (1.13 ± 0.20 ppt), and the close proximity to freshwater source areas 

(upstream James and Chickahominy Rivers) allowed for a good mix of estuarine and 

riverine faunas indicative of the spatially compressed salinity gradient in the James River.

Mesohaline I: This group included 9 stations (TWINSPAN Group 5) taken from 

JA-22 and JA-29, and supports primarily estuarine (6) and estuarine-marine (8) species, 

though several freshwater (6) and marine (8) species also occur in low numbers. A total 

of 5,209 individuals and 30 species were collected. The Atlantic silverside (M menidia; 

41.7%), juvenile white perch (M americana; 11.4%), juvenile Atlantic menhaden (B. 

tyrannus; 9.7%), juvenile threadfin shad (D. petenense; 9.0%) and juvenile striped bass
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(M. saxatilis; 6.9%) comprised 78.7% of all individuals captured at these sites. 

TWINSPAN failed to clearly identify any indicator species for this group. The most 

frequently occurring species were the Atlantic silverside (FOC 98%) and juvenile striped 

bass (FOC 91%). Average salinity for the stations in this group was 5.79 ± 0.38 ppt.

Mesohaline II: This group included 6 stations (TWINSPAN Group 6), taken from 

JA-12 (5) and JA-22 (1), and supports primarily estuarine (8) and estuarine-marine (11) 

species. A total of 11,915 individuals and 31 species were collected. The Atlantic 

silverside (M menidia; 59.2%), the bay anchovy (A. mitchelli; 14.3%) and the white 

mullet (Mugil curema; 6.0%) comprised 79.5% of all individuals collected at these sites. 

TWINSPAN identified the white mullet (FOC 63%) and the striped killifish (FOC 77%) 

as indicator species. The other most frequently occurring species were the Atlantic 

silverside (FOC 100%) and the spot (FOC 80%). Average salinity for the stations in this 

group was 11.78 ± 0.90 ppt.

Species Diversity — Rarified species richness was markedly hump-shaped with a 

peak near the tidal freshwater interface (approximately river mile 40) and coincident with 

the confluence with the Chickahominy River (Fig. 33b). Values were generally lower 

above and below this region. Total species richness displayed similar patterns (Fig. 33a); 

although, the lower oligomesohaline portion of the sample area showed a sharp decrease 

in the total number of species captured that was unrelated to the species-area effect (Fig. 

34). Species evenness (Fig. 35) and diversity (Fig. 36) showed a similar hump-shaped 

pattern near the freshwater interface, although both had local increases above the 

confluence with the Appomattox River. The highest compositional turnover rate (Beta
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diversity) was observed across the freshwater interface near JA-36 (Fig. 37). A small, 

local increase was also evident above the confluence with the Appomattox River.
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Figure 29: TWINSPAN classification of James River stations. Indicator species for

each division are shown in decreasing order of importance. Eigenvalues 

of major divisions are shown in bold under each division. Binary numbers 

above divisions denote major subsets. Smaller font numbers below final 

groups are the number of stations within that group. Larger font numbers 

below brackets are final TWINSPAN group labels. Station labels are 

rivermile-year.
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Figure 30: Axes 1 and 2 of DCA ordination of James River stations. Symbols 

correspond to TWINSPAN groups. Units are standard deviations in 

species turnover rate.



DC
A 

Ax
is 

2

James River Station Scores 
(TWINSPAN Groups)

1

0

1

31 2■2 1 0

DCA Axis 1

• TWINSPAN Group 1
o TWINSPAN Group 2
T TWINSPAN Group 3
V TWINSPAN Group 4
■ TWINSPAN Group 5
□ TWINSPAN Group 6



96

Figure 31: Axes 1 and 2 of DCA ordination of the 38 James River species included in

the gradient analysis. Symbols correspond to the modified ecological 

groups of McHugh (1967). Species labels are the first f  our letters of 

genus and species names respectively (see Appendix 2 for a complete 

alphabetical list). Units are standard deviations in species turnover rate.
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Table 15: Direct comparison of DCA and DCCA axes via Spearman rank correlation 
for the James River stations. DCA scores are weighted average scores and DCCA 
scores are linear combination scores predicted from the multiple regression.

Eigenvalue Gradient Length

Ordination Axis DCA DCCA DCA DCCA r 2

1 0.54 0.50 3.54 2.28 0.93 ***

2 0.18 0.09 2.03 1.04 0.46 ***

*** p < 0.001
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Table 16: Results of the detrended canonical correspondence analysis of fish 
assemblages from the James River. Significance values of correlation and canonical 
coefficients correspond to a two-tailed students Mest.

Variable Axis 1 Axis 2

Canonical Coefficients for Environmental Variables

Salinity 0.2230 *** -0.1862
Temperature 0.0215 0.0999 *
Dissolved 0 2 -0.0156 -0.1590 ***
pH -0.0076 0.0241
Substrate Grain Size 0.0220 -0.1135 *
Channel Width -0.0207 -0.0724
6' Contour 0.2728 *** 0.4047 ***
Distance to Bay Mouth -0.2789 *** 0.1310

Correlations of Environmental Variables with Axes

Salinity 0.9213 *** -0.0602
Temperature -0.2483 0.2142
Dissolved 0 2 -0.1358 -0.2918 *
pH -0.0605 -0.1983
Substrate Grain Size 0.0697 -0.4926 ***
Channel Width 0.9437 *** -0.0411
6' Contour 0.9258 *** 0.1953
Distance to Bay Mouth -0.9325 *** 0.1453

Summary Statistics for Ordination Axes

Eigenvalue 0.501 0.085
Species-environment 0.986 0.795

correlation
Cummulative % of species- 56.4 65.9

environment variance
explained

Monte Carlo probability for significance of the sum of
all eigenvalues (103 pemutations): 0.001

p <  0.005 ** p < 0 .0 1  * p < 0.05
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Figure 32: Axes 1 and 2 of DCCA ordination of the 38 Janies River species included

in the gradient analysis. Environmental variables are indicated with 

vectors. Only statistically significant variables are included in the 

ordination diagram. Abbreviations are the first four letters in both the 

genus and species names (see Appendix 2 for a complete list).
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Table 17: Dominant and indicator taxa for TWINSPAN groups of James River 
stations. Density is mean (+/- 1 standard error) abundance per 1000 m2 swept area 
calculated for all stations included in the TWINSPAN group. FOC = frequency of 
occurence in the stations from the TWINSPAN group. Indicator species are denoted 
with an asteriks.

TWINSPAN
Group

Dominant & Indicator Taxa

Species Density (#/103 m2) FOC Fork Length (mm)

Alosa aestivalis * 35.02 (14.55) 0.25 51.60 (0.15)
Dorosoma petenense 30.22 (27.67) 0.08 69.54 (0.30)
Notropis hudsonius 29.30 (11.43) 0.60 62.71 (0.49)
Morone americana 24.71 (10.07) 0.70 61.36 (1.19)
Cyprinella analostana 16.49 (8.34) 0.52 59.02 (0.53)
Hybognathus regius 13.89 (9.95) 0.17 65.08 (0.67)
Morone saxatilis 13.67 (4.55) 0.71 56.53 (1.15)
Dorosoma cepedianum 10.77 (3.95) 0.43 151.08 (3.17)
Menidia beryllina 5.12 (1.35) 0.35 60.98 (0.87)
Ictalurus punctatus 3.83 (2.37) 0.16 80.06 (6.86)
Trinectes maculatus 2.56 (0.82) 0.37 47.03 (1.40)
Lepomis macrochirus 1.20 (0.36) 0.19 100.52 (8.60)
Micropterus salmoides 1.04 (0.34) 0.21 97.76 (9.63)
Micropterus dolomieu 0.39 (0.13) 0.14 67.29 (4.08)

Notropis hudsonius 54.55 (9.84) 0.94 60.43 (0.55)
Morone americana 35.70 (5.11) 0.96 61.40 (0.40)
Menidia beryllina 17.88 (6.16) 0.76 56.98 (0.73)
Morone saxatilis 16.14 (3.07) 0.92 61.83 (1.36)
Dorosoma cepedianum 5.89 (1.25) 0.66 108.70 (0.89)
Ictalurus punctatus 5.49 (1.25) 0.60 85.32 (5.09)
Cyprinella analostana * 5.26 (1.16) 0.58 59.98 (1.11)
Dorosoma petenense 3.88 (1.23) 0.38 57.83 (0.36)
Micropogonias undulatus 3.87 (1.23) 0.26 106.06 (2.31)
Trinectes maculatus 2.61 (0.71) 0.48 45.79 (0.43)
Leiostomus xanthurus 2.29 (0.91) 0.28 103.24 (1.07)
Etheostoma olmstedii 1.80 (0.64) 0.38 64.31 (1.42)
Notemigonus chrysoleucas * 1.53 (0.43) 0.28 99.00 (6.73)
Fundulus diaphanus 0.80 (0.32) 0.26 57.29 (2.12)
Fundulus heteroclitus 0.79 (0.21) 0.28 54.28 (1.20)

Dorosoma cepedianum 147.57 (54.33) 0.79 134.24 (4.10)
Morone americana 98.00 (47.40) 1.00 71.49 (0.57)
Dorosoma petenense 74.03 (29.15) 0.58 58.90 (0.96)
Trinectes maculatus * 49.57 (10.08) 0.91 54.92 (1.22)
Notropis hudsonius 10.33 (2.25) 0.81 61.88 (0.25)
Morone saxatilis 9.13 (2.62) 0.60 64.87 (1.20)
Ictalurus punctatus 6.75 (1.51) 0.74 101.36 (4.27)
Menidia beryllina 5.68 (1.35) 0.67 59.24 (0.38)
Leiostomus xanthurus 4.21 (1.80) 0.30 100.16 (1.52)



TWINSPAN --------------
Group Species

Dom inant & Indicator Taxa

Density (# /l03 m2) FOC Fork Length (mm)

3 Fundulus heteroclitus 3.73 (1.68) 0.56 60.87 (1.45)
cont'd Cyprinella analostana 1.46 (0.32) 0.47 60.52 (0.63)

Fundulus diaphanus 1.45 (0.50) 0.30 69.06 (1.44)
Etheostoma olmstedii 1.25 (0.34) 0.40 63.71 (0.58)
Micropogonias undulatus 1.18 (0.50) 0.19 100.93 (1.18)

4 Morone americana 33.48 (6.35) 1.00 70.85 (1.00)
Micropogonias undulatus * 24.80 (5.69) 0.68 105.24 (0.54)
Morone saxatilis 13.45 (2.03) 1.00 66.92 (1.59)
Notropis hudsonius 9.77 (1.62) 0.92 68.91 (0.98)
Menidia beryllina 4.54 (1.07) 0.70 59.67 (0.76)
Leiostomus xanthurus 4.38 (1.77) 0.46 103.78 (1.46)
Anchoa mitchelli 3.65 (1.64) 0.35 51.87 (0.86)
Dorosoma cepedianum 2.73 (1.21) 0.38 144.34 (3.75)
Ictalurus punctatus 2.16 (0.78) 0.38 157.60 (11.36)
Mugil cephalus 2.01 (0.98) 0.32 170.20 (8.85)
Mugil curema 1.66 (0.90) 0.11 128.56 (1.52)
Trinectes maculatus 1.24 (0.62) 0.27 61.80 (2.09)
Alosa aestivalis 1.24 (0.85) 0.11 50.16 (1.18)
Cyprinella analostana 0.78 (0.28) 0.24 66.30 (1.54)
Dorosoma petenense 0.71 (0.41) 0.11 64.34 (0.73)
Membras martinica * 0.63 (0.24) 0.22 78.68 (2.23)
Menidia menidia 0.56 (0.20) 0.24 63.38 (1.30)
Hybognathus regius 0.45 (0.41) 0.05 98.85 (5.36)
Notemigonus chrysoleucas 0.43 (0.21) 0.16 92.50 (3.86)

5 Menidia menidia 66.69 (13.81) 0.98 67.79 (0.29)
Morone americana 17.74 (9.43) 0.70 60.24 (0.86)
Brevoortia tyrannus 15.92 (12.75) 0.20 124.15 (0.45)
Dorosoma petenense 14.03 (11.43) 0.07 73.64 (0.24)
Morone saxatilis 10.70 (1.42) 0.91 64.98 (0.73)
Micropogonias undulatus 8.16 (1.97) 0.57 116.24 (1.11)
Dorosoma cepedianum 7.90 (2.88) 0.50 162.34 (3.40)
Leiostomus xanthurus 4.09 (1.03) 0.59 85.63 (1.27)
Mugil cephalus 3.81 (1.59) 0.33 157.55 (5.54)
Anchoa mitchelli 2.26 (0.69) 0.37 54.32 (1.02)
Mugil curema 2.14 (0.78) 0.26 133.58 (2.34)
Membras martinica 1.19 (0.43) 0.22 75.12 (0.93)
Fundulus heteroclitus 0.63 (0.23) 0.20 65.66 (1.89)
Fundulus majalis 0.63 (0.45) 0.13 93.90 (3.63)
Opisthonema oglinum 0.60 (0.26) 0.13 85.93 (1.12)
Anchoa hepsetus 0.60 (0.20) 0.24 69.41 (2.14)
Pomatomus saltatrix 0.33 (0.13) 0.15 112.93 (18.32)
Strongylura marina 0.18 (0.08) 0.11 297.22 (22.98)



TWINSPAN --------------
Group Species

Dom inant & Indicator Taxa

Density (#/l 03 m2) FOC Fork Length (mm)

6 Menidia menidia 322.26 (94.42) 1.00 66.15 (0.09)
Anchoa mitchelli 77.85 (51.59) 0.47 47.37 (0.22)
Mugil curema * 32.42 (15.23) 0.63 73.90 (0.98)
Dorosoma cepedianum 22.05 (12.28) 0.43 92.48 (0.80)
Fundulus majalis * 19.50 (4.53) 0.77 88.62 (1.02)
Mugil cephalus 18.22 (11.09) 0.23 79.66 (1.37)
Leiostomus xanthurus 15.48 (3.55) 0.80 105.27 (0.95)
Opisthonema oglinum 9.82 (6.64) 0.33 90.21 (0.61)
Morone americana 6.16 (3.48) 0.30 51.45 (0.54)
Morone saxatilis 6.03 (1.66) 0.67 79.43 (1.47)
Menticirrus americana 2.69 (1.36) 0.30 78.37 (3.63)
Micropogonias undulatus 2.37 (0.99) 0.30 157.60 (4.84)
Anchoa hepsetus 2.05 (1.22) 0.23 58.05 (1.69)
Fundulus heteroclitus 1.96 (1.14) 0.23 69.51 (1.82)
Pomatomus saltatrix 1.19 (0.83) 0.17 112.88 (4.75)
Caranx hippos 0.73 (0.42) 0.13 54.56 (3.48)
Bairdiella chrysoura 0.73 (0.33) 0.23 65.25 (5.08)
Strongylura marina 0.64 (0.33) 0.17 214.14 (11.43)
Brevoortia tyrannus 0.18 (0.11) 0.10 141.75 (20.36)
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Table 18: Average environmental values by TWINSPAN group for stations from the 
James River. Quantitative variables are mean ± one standard error. Channel 
measurements are given as a range.

TWINSPAN
Group

Salinity
(PPt)

Temperature
(°C)

Dissolved 0 2 
(mg r1)

pH

1 0.02 + 0.00 29.56 + 0.31 6.58 + 0.11 7.51 + 0.10

2 0.01 + 0.01 28.42 + 0.40 7.85 + 0.33 8.08 + 0.13

3 0.06 + 0.03 27.84 + 0.30 7.14 + 0.19 7.88 + 0.08

4 1.13 + 0.20 26.15 + 0.38 6.71 + 0.22 7.50 + 0.09

5 5.79 + 0.38 28.21 + 0.39 6.38 + 0.25 7.56 + 0.10

6 11.78 + 0.90 27.81 + 0.45 6.58 + 0.27 7.45 + 0.15

Nearshore
Sediment

6’ Contour 
(m)

Distance to Bay 
Mouth (Nm)

SAV Beds

1 Silt-Sand 22-48 75.16- 85.46 No

2 Sand-Granule 24-79 53.61 -75.16 No

3 Sand-Granule 60 - 384 58.06 - 69.66 No

4 Sand 48 - 384 42.91 - 53.61 No

5 Sand 876 - 1020 29.71 - 36.76 No

6 Sand 876- 1020 19.26-29.71 No



102

Figure 33: Total (a) and rarefied (b) longitudinal species richness in the James River,

1990-94. Rarefied species richness is fit with a LOWESS curve.
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Figure 34: Total species captured and total area swept for James River stations, 1990-

1994.
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Figure 35: Longitudinal species evenness (Pielou’s) in the James River, 1990-1994,

fit with a LOWESS curve.
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Figure 36: Longitudinal species diversity (Shannon-Wiener) in the Janies River,

1990-1994, fit with a LOWESS curve.
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Figure 37: Longitudinal species turnover (beta diversity) in the James River, 1990-94. 

Units are standard deviations in species turnover per nautical mile from 

the DCA ordination of all stations.
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DISCUSSION 

Longitudinal Patterns in Assemblage Structure

Littoral fish assemblages of the three major tributaries to the lower Chesapeake 

Bay exhibited a strong pattern of longitudinal transition between permanent tidal 

freshwater river reaches and the mesohaline portion of the estuary. This coenocline is 

similar to patterns observed in other temperate and tropical zone coastal faunas (Felley 

1987; Rozas & Odum 1987b; Odum 1988; Peterson & Ross 1991; Winemiller & Leslie 

1992), and is characterized by a series of species supplements and replacements in 

successive downstream locations. Fish assemblages generally grade smoothly into each 

other with one notable exception; the freshwater interface is a boundary with a markedly 

increased rate of species turnover (=faunal break, Matthews 1986). Fairly distinctive fish 

assemblages can be mapped over a longitudinal pattern of fluvial zonation that 

corresponds to the first two axes of DCA/DCCA, and can be clearly seen in the 

distribution patterns of the more common species (Tab. 19-22). While estuarine fish 

populations in the Chesapeake Bay are known to undergo large interannual fluctuations in 

abundance (McHugh 1967; Houde 1993), the spatial structure of these assemblages 

during summer appears stable from year to year. Large-scale zonation in the river 

systems corresponded to three basic habitat types: permanent tidal freshwater, the 

freshwater interface (lower tidal freshwater and oligohaline reaches which straddle the 

interface) and the mesohaline portion of the estuary (Fig. 38).

Dominant species were widely dispersed within each of the three major 

ecoregions and few species were characteristic of only one aquatic habitat type. In

107
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general, two types of littoral fishes dominated the collections: juveniles of large 

migratory species and adults of smaller resident species. Small fishes in riverine and 

estuarine systems commonly assemble in shallow littoral zone habitats, presumably in 

response to predation on proximate and maybe even co-evolutionary time scales. 

Exceptions to this general spatial segregation by small fishes have been noted for 

schooling mid-water planktivores (clupeidae), schooling surface feeding invertivores 

(atherinidae) and cryptic or burrowing benthic fishes (e.g., blenniidae, gobiidae) (Ruiz et 

al. 1993). Even so, data from this study indicate that the first two of these groups do 

occur in significant numbers in shallow littoral waters. Given the selectivity of seine nets 

for smaller individuals, it would not be appropriate to apply this scheme to the total 

behavior of the species discussed. However, many of these species exhibit substantial 

ecological differences between life-history stages, and treatment as ontological entities 

(vs. species) may bring about more appropriate models (Livingston 1988). I therefore 

believe this scheme is ecologically meaningful and may be of use for large-scale 

comparative analyses with the littoral fish assemblages of other river dominated estuarine 

systems.

Permanent Tidal Freshwater — Three groups of fishes typified collections from 

permanent tidal freshwater: (1) a widely distributed resident group of second division 

freshwater fishes; (2) primary division freshwater fishes largely confined to upstream 

stations well above the influence of the salt wedge; and, (3) juveniles of non-resident 

adults who occupy tidal freshwater as a nursery. Group 1 is numerically dominated by a 

few cyprinid minnows, most particularly the spottail and satinfin shiners and the eastern
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silvery minnow. Other important secondary freshwater species include the banded

killifish, mummichog, inland silverside, and juvenile white, blue and channel catfishes.
/

Primary division (or obligate) freshwater fishes have essentially no tolerance for high 

salinity waters and are therefore largely confined to freshwater environments (Darlington 

1957). Though never dominant, several primary division freshwater fishes were regular 

components of permanent tidal freshwater collections. These included several 

centrarchids (bluespotted sunfish, redbreast sunfish, pumpkinseed, largemouth bass) and 

two percids (yellow perch and the tessellated darter).

The role as a nursery for annual migrants is a particularly important function of 

shallow tidal freshwater environments (Odum et al. 1984). Many of these anadromous 

and semi-anadromous fishes are of significant commercial importance in mid-Atlantic 

estuaries. Anadromous clupeids of the genus Alosa are mid-water planktivores with large 

populations known in the Chesapeake Bay tributaries (Massman 1953; Foerster &

Reagan 1977; Loesch 1987). Three species of Alosa were captured by the seines, though 

only the blueback herring was captured in any great number, primarily from the James 

River. The American shad was a regular subdominant component of the Pamunkey River 

tidal freshwater assemblage. The semi-anadromous gizzard and thread-fin shads were 

numerically quite important in all of the rivers. The gizzard shad frequently extended 

well into the saline estuary, particularly in the James and Rappahannock Rivers.

The Interface Zone — The waters bracketing the freshwater interface are 

hydrologically dynamic, range from fresh to oligohaline salinities, and harbor a diverse 

assemblage of fishes drawn from freshwater and marine source pools. Several secondary
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division freshwater fishes routinely penetrated into low salinity waters (e.g., gizzard shad, 

spottail shiner, satinfin shiner, banded killifish, channel catfish, white catfish). Similarly, 

several estuarine residents and juveniles of estuarine-dependent marine species were 

established in the lower tidal freshwater river reaches (e.g., mummichog, spot, Atlantic 

croaker, hogchoker, bay anchovy, Atlantic silverside). The distribution of three species 

were noticeably centered in the interface zone: juveniles of the hogchoker, white perch 

and striped bass.

White perch are semi-anadromous estuarine fishes who spawn in tidal freshwater 

during the spring and are distributed throughout the mesohaline portions of the estuary 

(Mansueti 1964; Hardy 1978). The closely related striped bass is fully anadromous with 

adults spawning in tidal freshwaters during the spring and adults broadly distributed in 

estuarine and near-coastal marine waters (Hardy 1978; Olney et al. 1991). Juvenile white 

perch and striped bass move towards brackish waters from August through November 

and are generally found in shallow littoral waters (Setzler-Hamilton 1987). The 

hogchoker is a common estuarine flatfish which completes its life cycle entirely within 

one estuary and is the most abundant pleuronectiform fish in the lower Chesapeake Bay 

(Bonzek et al. 1993). Eggs are spawned in saline waters near the mouth of the estuary, 

and the larvae migrate back to tidal freshwaters (Dovel et al. 1969). Life-history 

trajectories of these three species have fundamental differences in spawning locations and 

the distribution of adults, but share at least two commonalities: (1) the juveniles of each 

occupy tidal freshwaters as a nursery zone; and, (2) older juveniles progressively move 

into more saline waters.
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The Mesohaline Mid-Estuary — The areas above five ppt salinity had 

assemblages dominated by a variety of euryhaline estuarine residents and juveniles of 

estuarine-dependent marine species. The Atlantic silverside, bay anchovy and 

mummichog were the most important estuarine residents and are generally considered to 

be important forage species for the larger fishes of the Bay system (Murdy et al. 1997). 

Juveniles of the Atlantic menhaden, spot and Atlantic croaker were also numerically 

dominant and are commercially and recreationally quite valuable species. Most of the 

secondary freshwater species avoided higher salinity stations. An exception to this 

pattern was observed for the gizzard shad, which penetrated well into the lower estuary, 

particularly in the James River.

Upper mesohaline waters (i.e., salinities generally greater than 10 ppt) also housed 

several species who exhibit preferences for higher salinity portions of the Bay (Musick 

1972). These included estuarine residents (e.g., striped killifish, oyster toadfish, 

blackcheek tonguefish), coastal marine species who regularly utilize the Bay during warm 

months as nursery and adult feeding habitat (e.g., summer flounder, bluefish, Atlantic 

needlefish), and marine species who penetrate the high salinity lower reaches during 

summer (e.g., crevalle jack, inshore lizardfish, Atlantic thread herring). Several of these 

species are known to exhibit fairly broad tolerances for low salinity, and probably 

penetrate farther into the rivers in the deeper, more saline waters.

Assemblage Structure Correlation with Environmental Gradients

Four out of nine physical environmental variables included in the DCCA analyses
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had high loadings on the first ordination axis. Among these, the physiological constraints 

imposed by salinity are assumed to be of major importance in the structuring of fish 

assemblages across the lower reaches of the freshwater/estuarine ecotone. Salinity was 

probably not a major factor influencing fish assemblages in permanent tidal freshwater 

well above the interface. The other three statistically important variables on the first 

DCCA axis were fluvial distance to the bay mouth, and two components of habitat size: 

shoal width and channel width. Of course, many variables, both measured and 

unmeasured, may be expected to covary with salinity along an estuarine gradient. The 

truncation of freshwater species and station scores on the first DCA and DCCA axes 

generally suggest that those variables which continue to decrease in value moving 

upstream (i.e., distance to the bay mouth, channel width and shoal width) are not 

controlling the large scale assemblage patterns between regions. However, each of these 

may certainly have local effects within a major habitat type. For example, distance to the 

bay mouth may also be viewed as distance to the source pool for transient marine species. 

High salinity marine species were present in each of the river systems, yet more typically 

occurred in the James River vs. the Rappahannock River at similar salinities. This may 

be a simple distance-related effect on the relationship of local species diversity to the 

regional species pool, a topic of recent and growing interest (Ricklefs 1987; Ricklefs & 

Schluter 1993).

The results of this study indicate four general features of littoral fish assemblage 

structure with respect to salinity: (1) first division freshwater fishes are distributed in 

upstream, relatively stable freshwater reaches above the influence of the salt-wedge; (2)
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second division freshwater fishes dominate in tidal freshwater and make regular but 

limited penetration of the low-saline areas of the estuary; (3) estuarine residents and some 

estuarine-marine juveniles are dominant in the estuary and can make significant 

penetrations into tidal freshwaters; and, (4) high salinity marine species rarely occupy 

littoral waters below oligohaline salinities (Fig. 39). The degree of overlap between 

adjacent assemblages appears, in part, to be dictated by the physical strength of the 

salinity gradient.

Estuarine penetration and establishment of freshwater fish species is a 

consequence of limitations in physiological mechanisms for dealing with a hypertonic 

environment (Peterson & Meador 1994). Fifty-five percent of the freshwater fish species 

were never found in salinities greater than 0.5 ppt, and 82% were never encountered 

seaward of 5.0 ppt. Most of the second division (or facultative) freshwater species which 

did penetrate the lower estuary have well-known, if limited, salinity tolerances, and all 

were most abundant in tidal freshwater. Juveniles of the gizzard and thread-fin shads 

were commonly encountered in saline waters, particularly in the James River. Both are 

schooling planktivores which enjoy wide geographic distributions in the Atlantic and 

Gulf of Mexico coastal drainages of the U.S. (Page & Burr 1991), and whose juveniles 

regularly penetrate the oligohaline reaches of coastal rivers (Jones et al. 1987). The 

spottail shiner was also commonly captured in oligohaline waters. Other second division 

freshwater species encountered in low numbers in saline waters included the banded 

killifish and juvenile bluegill.

The limited upstream penetration and establishment of many marine fishes is
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similarly a consequence of their lack of physiological mechanisms for adjusting to a 

hypotonic environment (Bone et al. 1995). Even so, most estuarine residents, and the 

juveniles of marine species which occupy the estuary as a nursery, are very euryhaline 

and appear less affected by salinity then their freshwater counterparts (Gunter 1961; 

Vemberg & Vemberg 1976). It is therefore not surprising that juveniles of two of the 

most abundant estuarine-marine species (spot, Atlantic croaker) regularly penetrated deep 

into the tidal freshwater reaches of the rivers, well above the influence of the salt wedge. 

Migratory juveniles of spot and Atlantic croaker are physiologically well equipped for 

extreme salinity fluctuations (Moser & Gerry 1989), and are generalist feeders on infauna 

and epibenthic invertebrates (Chao & Musick 1977). These characteristics make them 

well-suited for invading tidal freshwater littoral habitats. Juveniles of several essentially 

marine species with known capabilities for adjusting to low salinity environments were 

extremely rare above the freshwater interface and dropped out altogether in the permanent 

tidal freshwater reaches (e.g., Mugil spp., Caranx spp.). It is possible that these species 

do sometimes invade the upper river reaches through the higher salinity waters of the 

deep river channels.

Three of the nine environmental covariables had significant loadings on the 

second DCCA axis. Dissolved oxygen was significant only in the James River, but does 

not appear to reach chronic or acute stress levels. The remaining two, nearshore substrate 

grain size and the presence of SAV’s (Mattaponi only), are measures of habitat structure 

and were important in the upstream tidal freshwater reaches of the rivers. Structural 

habitat heterogeneity in the form of aquatic vegetation, submerged trees and limbs, coarse
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detritus and coarse substrate is often positively correlated with the local diversity and 

density of fishes in freshwater environments (Gorman & Karr 1978; Capone & Kushlan 

1991; Benson & Magnuson 1992; Everett & Ruiz 1993). The effect of substrate was 

most pronounced in the Rappahannock River ordinations. The DCA ordination of stations 

extracted stations with pebble substrate (RA-65 and RA-69) from the center of the 

permanent tidal freshwater reach, while the grouping stations with sandy substrate from 

either end (RA-60 and RA-76). Numerically, the pebble stations were dominated by the 

ubiquitous spottail shiner. The distinction arose from the presence of several sub­

dominant species which seemed to prefer structure; particularly, juvenile blue catfish, 

yellow perch and the pumpkinseed.

Substrate grain size was also important to the explanation of species distributions 

in the upstream tidal freshwater reaches of the James, Pamunkey and Mattaponi Rivers. 

The presence of pebbles on the littoral shoals tended to increase upstream, though were 

never the dominant substrate in these rivers. Nevertheless, the presence of several first 

division freshwater fishes (mostly centrarchids) were correlated with the increase in mean 

substrate size (or perhaps diversity), and may mark the transition to more stable, riverine 

environments.

Only one station had significant SAV beds (MP-52). The macrofauna associated 

with SAV’s have been the subject of extensive study in the estuarine and freshwater 

environments of the Chesapeake Bay (e.g., Orth et al. 1984; Rozas & Odum 1988;

Sogard & Abele 1991). Though not sampled in previous years, SAV at MP-52 in 1997 

was dominated by wild celery (Vallisneria americana) and the complex alga Nitella
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flexilis (Charophyceae). Conversations with survey personnel suggest this plant 

assemblage has been stable in composition, though interannual fluctuations in coverage 

are probable. The submerged plant beds at MP-52 were heavily used by several species 

of fishes. Since this study is limited to only one station with SAV’s over a five-year 

period, I can say little about the large-scale spatial patterns in the use of SAV’s. 

Nevertheless, certain attributes of the fauna at MP-52 are notable and congruent with 

other studies of SAV use in the tributaries to the Chespeake Bay. For example, juvenile 

redbreast sunfish and pumpkinseed were much more abundant and frequently captured in 

the SAV bed vs. downstream unvegetated stations. Juvenile centrarchids are known to 

concentrate in the vegetated littoral zones of lakes (Werner et a l 1977) and tidal 

freshwater marshes (Rozas & Odum 1987a). The bluespotted sunfish, a small 

centrarchid, was also consistently captured. Small sunfishes of the genus Enneacanthus 

are almost invariably associated with vegetation in tidal and non-tidal freshwater swamps 

where they glean small invertebrates (Lee et al. 1980; Rozas & Odum 1987a). The 

banded killifish was also very abundant, and is known to frequent both submerged 

vegetation beds and flooded marsh surfaces in tidal freshwater (Rozas & Odum 1987b).

Longitudinal Patterns in Species Diversity

The ichthyofaunal diversity of the Chesapeake Bay estuary has been documented 

by numerous investigators over the past century (e.g., Uhler & Lugger 1876; Everman & 

Hildebrand 1910; Hildebrand & Schroeder 1927; McHugh 1967; Musick 1972;

Weinstein 1985; Vieira & Musick 1993; Murdy et a l 1996). These accounts are largely
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focussed on the mainstem of the Bay, and often offer little more than annotated species 

lists for the low salinity and tidal freshwater reaches of the major southern tributaries. 

Systematic investigations of fish species diversity along estuarine gradients from 

permanent tidal freshwater to marine salinities have been generally rare, and those from 

Chesapeake Bay are no exception. Species diversity, evenness and rarefied richness from 

this study are compiled in Table 23.

The dramatic biological, chemical and physical changes in the low salinity 

habitats of estuaries (i.e., < 5 ppt) are thought to limit the number of resident faunal taxa 

(Remane & Schlieper 1971; Dunson & Travis 1994). Remane (1934) first described this 

phenomena, a species minimum occurring near oligohaline salinities (Fig. 40), and it has 

been hypothesized as a general feature of strong gradient estuaries (Deaton & Greenberg 

1986). In a review of the ecology of salt vs. freshwater marshes, Odum (1988) 

hypothesized that such a relationship may exist for fishes of western Atlantic estuaries, 

but was careful to point out the paucity of data from low salinity environments (Fig. 41). 

Studies along the Gulf of Mexico and Atlantic coasts have generally confirmed the rise in 

the number of fish species along transects from mesohaline estuaries to nearshore marine 

environments (e.g., Gunter 1961; Dahlberg 1972), though other gradient studies focussed 

on the lower estuary have failed to find a minimum (Peterson & Ross 1991). Two 

possible complications to the location of this pattern in estuarine fishes are: (1) the large 

number of seasonal migratory species (e.g., Atlantic menhaden, spot, Atlantic croaker) 

whose various life history stages probably exhibit different salinity preferences; and, (2) 

the failure to standardize species richness to a measure of sample size (i.e., rarefaction).
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Fortunately, beach seines predominantly capture juvenile stages of most of the migratory 

species. Figure 42 shows the relationship between the mean expected number of species 

and mean annual summer salinity from the lower Chesapeake Bay tributaries (stations 

above the first permanent tidal freshwater station were excluded). There is a general 

trend towards a minimum near 8-10 ppt salinity, but more stations in that salinity range 

are needed before confirmation may be asserted. In the individual river analyses, this 

relationship was most apparent in the Rappahannock River. Species richness tends to 

increase moving from oligohaline salinities into tidal freshwater due to the interfacing of 

freshwater and estuarine assemblages. Peterson and Ross (1991) noted a similar 

phenomena in a Mississippi coastal river with seven species comprising 90.1% of the 

individuals in mesohaline waters, 12 species comprising 91.5% near the interface and 

nine species comprising 91.0% in tidal freshwater just above the interface. Similarly, 

Smith et al. (1984) documented greater richness and evenness within an oligomesohaline 

section of the York River estuary when compared to a downstream polyhaline area.

Fish assemblages from upstream localities were more evenly distributed among 

the species with upper tidal freshwater evenness scores (Pielou’s Index, J') averaging 

near 0.7 and mesohaline scores averaging closer to 0.5. Overall species diversity values 

(Shannon-Wiener Index, H’) within the tidal freshwater and interface zones were also 

consistently higher then the mesohaline stations. This may reflect the transition from the 

estuary, where fewer species have evolved the physiological capacity to deal with 

variable salinities and are often contagiously distributed in large schools.
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Relationships to Existing Models of Fish Assemblage Structure

One of the more striking features of the permanent tidal freshwater assemblages is 

the low number of species relative to upland lotic freshwater rivers of the piedmont and 

montane provinces (Fig. 43). Although seine nets do not, as a rule, capture the larger or 

more pelagic species, over a five-year period many of the larger species will be captured a 

few times. Hence, the number of freshwater species captured by the survey probably 

underestimates the total species complement, but not grossly. Several factors contribute 

to the lower numbers in tidal areas including a reduction in the diversity of structural 

habitat (particularly substrate), infrequent or absent riffles and runs, and turbid or stained 

waters (Jenkins & Burkhead 1994). The upper tidal freshwater resident fauna is 

derivative of piedmont and upland faunas, and no species appear to be specialized for 

exclusive existence in freshwater below the fall line. Two species do appear to be 

primarily distributed in tidal freshwater, the freshwater derived banded killifish and the 

marine derived inland silverside. Members of the resident fauna were widely distributed 

and exhibited a high degree of substrate eurytopy. Only the bluespotted sunfish appeared 

largely constrained to the one station with SAV beds. Several essentially marine 

anadromous species have their life-histories cued to the availability of a free connection 

to tidal freshwater (e.g., Alosa spp., Morone spp.), and utilize these waters as the upper 

end of the estuary. Overall, the patterns observed in the permanent tidal freshwater river 

reaches generally do not agree with the large-scale non-tidal stream models of discrete 

longitudinal zonation or the downstream addition of species.

The importance of vegetative cover to freshwater fishes is well documented,



providing refuge from predators, substrate for foraging and suitable spawning sites 

(Savino & Stein 1982, 1989; Werner etal. 1983; Angermeir & Karr 1983; Mittlebach 

1986; Rozas & Odum 1987a, 1988). The changes in assemblage structure associated 

with submerged macrophyte beds at station MP-52 were mainly due to enhanced 

recruitment of young and adult fishes which were found elsewhere in the river. This 

suggests that macrophyte beds in the main river channel may serve a similar role as 

seagrasses in estuarine systems: a structural attractant which tends to concentrate fishes 

from the local area (Ruiz et al. 1993). The enhanced species richness associated with 

abiotic habitat structure is also a well documented (e.g., Gorman & Karr 1978; Schlosser 

1982, 1987; Capone & Kushlan 1991), if not universal (Bart 1989), feature of freshwater 

fish assemblages. Freshwater fishes are known to make active substrate selections based 

on mean particle size, and tidal freshwater fishes may exhibit limited local preferences 

when a preferred substrate is available in large enough patches.

The freshwater interface zone (which may be subdivided into lower tidal 

freshwater and oligohaline ends) appears to meet the definition of an ecotone. It is a 

region of sharp transition in the physical and biotic environment where saline and 

freshwater meet and deposition of the major portion of the alluvial sediment load takes 

place (turbidity maximum zone of Nichols 1972, 1974). An incipient stress point 

associated with salinities between 0 and 2 ppt has been described which may serve as a 

barrier to the egress of species ill-adapted to hypertonic environments (Deaton 1981; 

Deaton & Greenberg 1994). The rate of species turnover in all of the rivers peaked in this 

salinity range (Fig. 44), and in general, marine species made larger forays across the
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interface then did freshwater species. It then follows that the role of salinity in 

determining the composition of fish assemblages is dependent upon whether the 

assemblage is primarily comprised of freshwater- or marine-derived species (Peterson & 

Meador 1994). Studies in coastal areas of Louisiana (Rousenfell 1964), North Carolina 

(Rozas & Hackney 1984), Georgia (Rogers et al. 1984) and north-western Florida 

(Subrahmanyan & Coultras 1980) have indicated that salinity may only play a minor role 

in affecting the primary distribution of marine derived fishes. However, other studies 

have demonstrated the presence of macrofaunal assemblages which conform to well- 

defined salinity gradients (Boesch et al. 1977; Weinstein et al. 1980).

When physiological systems are stressed, fishes often employ behavioral 

adjustments to overcome the increased metabolic costs associated with unfavorable 

environments (Slobodkin & Rappaport 1974; Pitcher 1993; Werner & Anholt 1993). 

However, when the exposure to such stress may be controlled via residence time, the 

tendency for highly mobile organisms to penetrate physiologically unfavorable 

environments in order to gain access to some other resource (e.g., food) may increase.

The low salinity zone has historically been viewed as the region of maximum 

primary and secondary production within an estuary (Day et al. 1989), and hence an area 

of exceptional value to fishes, receiving fish eggs, larvae and juveniles from freshwater, 

anadromous and estuarine spawners (Horn & Allen 1976; Yanez-Arancibia et al. 1980). 

This productivity peak has been associated with the “maximum turbidity” or 

“entrapment” zone; an area of the lower estuary where the hydrodynamics entrain 

suspended material resulting in higher particle concentrations than in waters both



122

landward and seaward (Dovel et al. 1969; Cronin & Mansueti 1971; Chester 1990). Two 

contrasting perspectives on the biological role of the maximum turbidity zone (MTZ) 

have arisen: the first being that it is a zone of stress and mortality for the plankton 

community (Bousfield et al. 1975; Dodson et al. 1989), the second that it is a biologically 

productive area with a complex, structured food web (Barclay & Knight 1981). Though 

debate continues, recent observations reject the former and suggest the MTZ is a valuable 

larval fish nursery (Frenette et al. 1995).

The diversity in fish eggs and larvae in low salinity reaches of Virginia’s major 

tributaries to the Chesapeake Bay peaks in July (Massman 1954). Rozas and Hackney 

(1984) further observed that the residence time in low salinity intertidal marsh habitats 

for the small juveniles of two recruiting species (summer flounder and Atlantic 

menhaden) is relatively short. Peterson-Curtis (1997) found that juvenile hogchokers are 

physiologically stressed by very low salinity environments, yet they actively choose these 

environments during early ontogeny. Hence, individuals of some species may take 

advantage of productive low-salinity littoral habitats during post-larval and early juvenile 

development and then move into other areas of the system as larger juveniles when 

predation threats are reduced.

The lower river reaches (salinity > 5 ppt) support a western Atlantic temperate 

estuarine fauna which is well described (e.g., Robbins & Ray 1986; Murdy et al. 1997). 

The primary factors influencing the distributional patterns of plants and animals in the 

Chesapeake Bay estuary are salinity and its correlates (spatial coenoclines) and 

temperature (seasonal turnover) (Jenkins & Munroe 1994). During summer, the salinity
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gradient is relatively stable along the estuarine axis (Schubel & Pritchard 1987), and may 

serve as part of a continuum of physiological stress, ordering habitats from benign to 

harsh relative to- species tolerances. Abiotic factors thus serve as a ‘physiological sieve’ 

(Remmert 1983), creating a longitudinal mosaic of intergrading, but distinct, faunal 

assemblages. Descriptions of the distributions of estuarine organisms have yielded at 

least a dozen salinity classification schemes. Perhaps the most well-known estuarine 

zonation scheme is the Venice System (Fig. 45a), which has superseded most other 

schemes (Anonymous 1959). The empirical basis for this system was not reported in the 

original document, and so its utility is largely descriptive. A recent test of this scheme 

using 316 reported salinity ranges for fauna from the Chesapeake and Delaware Bays 

(broken down by species and life-history stage) showed general agreement with the 

Venice System except in the middle of the salinity range (Fig. 45b: Bulger et al. 1993). 

Components II and III of the ‘biologically-based’ system reflect a large mesohaline zone 

overlapping with a lower polyhaline zone. The results of this study generally reflect this 

type of overlapping zonation with several euryhaline resident and migratory species 

spread over the range of at least 0 to 20 ppt, and higher salinity preferring marine forms 

which do not generally penetrate the very low salinity river reaches. However it should 

be noted that the Bulger et al. analysis used reported total salinity ranges which, 

particularly for secondary freshwater fishes, generally overestimates the behavior of the 

species. All of the species which dominated the littoral zone at the mesohaline stations 

are generally known to be widespread in the estuary (e.g., Atlantic menhaden, Atlantic 

silverside, bay anchovy), and it would not be reasonable to assume their distributions are
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truncated at the upper mesohaline range.
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Table 19: Common species characteristic of each of the three major faunal zones 
and ubiquitous species common in two or more adjacent zones of the longitudinal 
aquatic gradient in the Rappahannock River. The centers of the TWINSPAN 
station groups are given by the bold numbers. Species names are placed near their 
abundance peak. Locally dominant species are shown in bold.

Permanent Tidal Freshwater
Pebble Bottom | Sandy Bottom

Interface

Freshwater | Oligohaline
Mesohaline

Lower | Upper

1 2 3 4 5 6

Ictalurus furcatus *
Lepomis gibbosus 
Lepomis macrochirus 
Perea flavescens

Etheostoma olmstedi-------------------------------------------

Dorosoma cepedianum -----------------------------------

------------------------------------------------------Cyprinella analostana--------------------------------------

--------------------------------------------------- Fundulus diaphanus-------------------------------------------

---------------------------------------------------Hybognathus regius -------------------------------------------

Menida beryllina ------------------------------------------------------------------------------------------------------------

----------------------------------Morone saxatilis--------------
Notropis hudsonius------------------------------------------

---------------------Morone americana-----------------------------------------------------------------------------
---------------------------------------------------------Trinectes maculatus--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------Micropogonias undulatus-----------------------------------------------------------------------------------

---------------------------------------------------------------------Fundulus heteroclitus-----------------------------------------------------------------------------------------------

----------------------------------------------- Leiostomus xanthurus----------

---------------------------------- Brevoortia tyrannus
-------------------------------------- Menidia menidia

-------------------------------------------Anchoa hepsetus
----------------------------------------------Fundulus majalis

Paralichthys dentatus 
Pomatomus saltatrix 

Scomberomorous maculatus 
Strongylura marina 

Synodus foetens
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Table 20: Common species characteristic of each of the three major faunal zones 
and ubiquitous species common in two or more adjacent zones of the longitudinal 
aquatic gradient in the York and Mattaponi Rivers. The centers of the 
TWINSPAN station groups are given by the bold numbers. Species names are 
placed near their abundance peak. Locally dominant species are shown in bold.

Permanent Tidal Freshwater

Upper and | Lower 
Vegetated

1 2
<------------------ Mattaponi River -

Enneacanthus gloriosus 
Lepomis auritus 
Lepomis gibbosus 
Lepomis macrochirus 
Micropterus salmoides 
Perea flavescens

Alosa sapidissima---------------------------------------------------

Etheostoma olmstedi-----------------------------------------

Fundulus diaphanus-------------------------------------------

 Cyprinella analostana-------------------

 Hybognathus regius ------------------------

--------------------------------------Menida beryllina----------------------

----------------------------------------------------------------------------------------Morone americana-----------------------------------

---------------------------------Morone saxatilis--------------
---------------------------------Notropis hudsonius----------

--------------------------------Fundulus heteroclitus-------------------------------------------------------------
-----------------------------------------------------------------Trinectes maculatus-------------------------------

 Anchoa mitchelli-----------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------- Leiostomus xanthurus----------------------------

------------------------------------------------------------------------------------------------------------------------------------- Micropogonias undulatus-----------------

 Menidia menidia
--------------------------------------------------------------------------------------------------------------Fundulus majalis

Anchoa hepsetus 
Synodus foetens 

Opsanus tau 
Symphurus plagiusa

4a 4b
York River------------------

Interface

Freshwater Oligohaline
Mesohaline

Lower Upper
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Table 21: Common species characteristic of each of the three major faunal zones 
and ubiquitous species common in two or more adjacent zones of the longitudinal 
aquatic gradient in the York and Pamunkey Rivers. The centers of the 
TWINSPAN station groups are given by the bold numbers. Species names are 
placed near their abundance peak. Locally dominant species are shown in bold.

Permanent Tidal Freshwater

Upper | Lower

Interface

Freshwater | Oligohaline
Mesohaline

Lower | Upper

1 2 3 4 5a 5b
  Pamunkey R iv e r------------------------------------- ► «-------- York River------------------

Lepomis auritus 
Lepomis gibbosus 
Lepomis macrochirus

Cyprinella analostana-----------------------------------------

Etheostoma olmstedi-------------------------------------------

Hybognathus regius ----------------------------------------------

--------------------------------------Fundulus diaphanus-------------------------------------------------------------------------------

 Menida beryllina-----------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------Morone americana---------------------------------

 Morone saxatilis-------------
----------------------------------Notropis hudsonius---------

----------------------------------------------------------------- Trinectes maculatus--------------------------------
 Anchoa mitchelli------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Fundulus heteroclitus------------------------------

------------------------------------------------------------------------------------------------------------------------------------- Leiostomus xanthurus----------------------------

------------------------------------------------------------------------------------------------------------------------------------- Micropogonias undulatus-----------------

 Menidia menidia
--------------------------------------------------------------------------------------------------------------Fundulus majalis

Anchoa hepsetus 
Synodus foetens 

Opsanus tau 
Symphurus plagiusa
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Table 22: Common species characteristic of each of the three major faunal zones 
and ubiquitous species common in two or more adjacent zones of the longitudinal 
aquatic gradient in the James River. The centers of the TWINSPAN station groups 
are given by the bold numbers. Species names are placed near their abundance 
peak. Locally dominant species are shown in bold.

Permanent Tidal Freshwater

Upper | Lower

Interface

Freshwater | Oligohaline
Mesohaline

Lower | Upper

1 3 2 3
t  |  t

Alosa aestivalis
Lepomis macrochirus 
Micropterus dolomieu 
Micropterus salmoides

Dorosoma petenense----------------------------------------------D. petenense
Notemigonus chrysoleucas —  N. chrysoleucas

Cyprinella analostana------------------------------------------------------------------------------------------

Menida beryllina------------------------------------------------------------------------------------------------------------

--------------------------------------- —  ictalurus punctatus-------------------------------------------

--------------------------------------------------- Fundulus diaphanus-------------------------------------------

--------------------------------------------------- Hybognathus regius -------------------------------------------

--------------- -— Notropis hudsonius----------------------
 Trinectes maculatus —  ---------------

-------------------- Dorosoma cepedianum-----------------------------------------------------------------------
  Morone americana-----------------------------------------------------------------------------
------------------------------------------------------Morone saxatilis---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------Micropogonias undulatus-------------------------------
 Leiostomus xanthurus

--------------------------------------- Menidia menidia
 Anchoa mitchelli
 Mugil cephalus
----------------------------------------------------------------------------------------------------------------------Mugil curema

-----------------------------------Brevoortia tyrannus
 Anchoa hepsetus

Fundulus majalis 
Mentichirrus americanus 

Opisthonema oglinum 
Pomatomus saltatrix
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Figure 38: Major ecoregions along the axial coenocline identified by the multivariate

analysis.
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Figure 39: Large-scale distributions of fishes with respect to the strength of the

salinity gradient in the tidal portions of the rivers.
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Table 23: Diversity of fishes from all rivers expressed as expected number of species per 
100 individuals via rarefaction (E(S)), Shannon-Wiener Diversity (H’) and Pielou’s 
Species Evenness (J'). All values are the mean annual value ± 1 standard error.

River Station Salinity E(S) H ' J '

Rappahannock 12 15.01 t 1.48 9.67 t 0.97 1.45 t 0.17 0.55 t 0.07
21 13.69 t 1.14 7.52 t 0.86 1.07 t 0.23 0.39 t 0.09
28 10.69 t 1.23 6.22 t 0.56 1.10 * 0.21 0.45 t 0.08
37 5.68 t 1.03 7.86 t 0.89 1.28 t 0.26 0.49 t 0.10
41 3.04 t 0.85 11.32 t 0.85 1.78 t 0.11 0.63 t 0.04
44 1.54 t 0.54 11.89 t 0.98 1.83 t 0.08 0.61 t 0.03
50 0.30 t 0.20 12.88 t 0.72 2.05 t 0.15 0.70 t 0.06
55 0.09 t 0.08 12.44 t 0.50 1.98 t 0.12 0.70 t 0.05
60 0.00 t 0.00 9.82 t 0.61 1.59 t 0.12 0.58 t 0.04
65 0.00 t 0.00 14.13 ¥ 0.70 2.15 t 0.04 0.71 t 0.01
69 0.00 t 0.00 14.60 t 1.04 2.10 t 0.16 0.70 t 0.05
76 0.00 t 0.00 13.10 t 0.80 1.97 t 0.10 0.71 t 0.03

York 15 16.30 t 0.39 8.10 t 0.81 1.36 t 0.17 0.55 t 0.06
21 13.52 t 0.57 11.00 t 0.33 1.82 t 0.12 0.65 t 0.05
28 11.92 t 1.35 9.56 t 0.27 1.51 =f 0.12 0.52 t 0.04

Mattaponi 33 4.16 t 1.40 9.18 t 0.93 1.46 t 0.21 0.57 =f 0.07
37 1.88 t 0.85 10.78 t 0.70 1.77 t 0.18 0.66 =f 0.06
41 0.63 t 0.38 10.06 t 0.55 1.65 t 0.13 0.66 t 0.08
44 0.24 t 0.13 10.48 t 0.19 1.65 t 0.15 0.64 t 0.06
47 0.14 t 0.12 10.77 =f 0.94 1.70 t  0.15 0.65 t  0.05
52 0.00 t 0.00 13.94 t  0.53 2.18 t 0.14 0.74 t  0.06

Pamunkey 36 3.75 t  0.85 9.03 =f 1.07 1.58 t  0.18 0.60 t  0.06
42 0.87 t  0.20 10.65 t  0.24 1.76 t  0.09 0.68 =f 0.04
45 0.20 t  0.09 9.59 t 0.48 1.59 t  0.08 0.63 t  0.04
50 0.05 t  0.03 11.84 t  0.80 1.77 t  0.07 0.66 t  0.04
55 0.02 t 0.02 11.55 t  1.38 1.56 t  0.16 0.57 t  0.06
61 0.00 t 0.00 12.25 t  1.19 2.07 t  0.15 0.79 t 0.02

James 12 13.02 t  0.58 8.51 t  1.08 1.31 t  0.21 0.46 t  0.07
22 7.17 t  0.51 8.39 t 0.78 1.27 t  0.20 0.50 t  0.07
29 4.51 t  0.43 10.74 t  0.31 1.64 t  0.08 0.61 =f 0.03
36 1.56 t  0.18 12.08 t  0.85 1.98 t  0.07 0.72 t 0.04
46 0.10 t  0.07 12.70 t  1.00 2.10 t  0.07 0.74 t  0.03
51 0.02 t 0.02 11.47 t  0.87 1.74 t  0.16 0.59 =f 0.05
56 0.02 t 0.02 10.91 t 0.65 1.61 t  0.11 0.60 t  0.04
62 0.03 t  0.03 8.19 t  0.80 1.35 t  0.15 0.51 t  0.06
68 0.02 t 0.02 10.35 t  0.60 1.66 =f 0.10 0.68 t  0.03
74 0.02 t 0.02 9.34 =f 0.69 1.58 =f 0.20 0.65 =f 0.09
78 0.02 t 0.02 10.36 t  0.66 1.68 t  0.13 0.66 t  0.06
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Figure 40: The relative number of species in relation to salinity. The number of 

species corresponds to the vertical extent of the respective areas (after 

Remane 1934).
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Figure 41: The relative number of fish species in relation to salinity along the

estuarine gradient (after Odum 1988).
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Figure 42: The relationship between the mean expected number of fish species 

(ESI00) via rarefaction and the mean annual summer salinity for all 

stations.
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Figure 43: Large-scale distribution of freshwater fish species in Virginia streams and 

rivers.
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Figure 44: The relationship of species turnover rate to the incipient stress point which

arises at 0-2 ppt salinity.
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Figure 45: Comparison of Venice System and the estuarine salinity zones derived

from multivariate analysis by Bulger et al. 1993.
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CONCLUSIONS

An important caveat of the approach I applied here is that pattern detection 

methods, such as canonical correspondence analysis (multiple regression) and correlation, 

do not necessarily imply causal relationships. Such analyses may be essential, however, 

to the formation of causal hypotheses and the progression to more experimental, process- 

oriented study in estuarine systems (Ludwig & Reynolds 1988; Coull 1985).

Results of the above analyses strongly suggest that large-scale littoral fish 

assemblage structure is related to site level and river level habitat variation (at least with 

respect to those species and variables included in the gradient analysis). Three ecological 

regions with recognizable fauna arose along the longitudinal river coenocline: permanent 

tidal freshwater, the freshwater interface, and the lower estuary. The influence of the 

physical environment in the tidal portions of the rivers probably overwhelms strong biotic 

interactions, and resident species are generally eurytopic within the ecological regions. 

Shallow water fishes were predominantly small residents and juveniles of larger 

migratory and resident species which presumably occupy the littoral zone as a refuge 

from predation.

The resident fauna of the tidal freshwater reaches are derivative of the non-tidal 

lowland rivers above the fall line (except Menidia beryllina) with no endemic species. 

Most species were not distinctly associated with a particular habitat, and there was no 

evidence for distinct longitudinal faunal zones or the downstream addition of species. 

Two factors which may explain these patterns are: (1) most of the individuals are 

secondary freshwater species who exhibit generalist patterns in feeding and spawning

138



139

requirements; and, (2) it would be disadvantageous for a tidal freshwater river species to 

specialize to a particular habitat since habitat availability and quality frequently change 

with the dynamic flow regimes and shifting substrates characteristic of these systems.

The freshwater interface serves as an ecotone which separates the resident faunas 

derived from freshwater and marine source areas. Several species of each group have the 

capacity to penetrate less favorable environments, though this capacity is asymmetric. 

Estuarine species appear more capable of withstanding a hypotonic environment while 

most salt-tolerant freshwater species made only shallow penetrations into oligohaline 

waters. The life-histories of the hogchoker, striped bass and white perch appear to be 

specifically cued to occupy this region as juveniles.

The lower estuary above five ppt salinity conforms well to existing models which 

suggest salinity (or its correlates) as the controlling factor, particularly during summer 

when a relatively stable salinity gradient is in place. There is evidence for a species 

minimum in the range of 8-10 ppt which generally agrees with the assertion of Remane 

(1934).



APPENDIX 1

Guidelines for Interpreting Community Structure Plots

The spatial community patterns are represented in a three-step graphical process 

designed to associate stations according to the distribution and abundance of common 

species, and then position species along gradients in environmental condition. 

Specifically,

1) Stations are classified in a TWINSPAN dendrogram.

2) Stations and species are ordinated via detrended correspondence analysis 

to associate specific species with the TWINSPAN station groups.

3) Species are associated with attributes of the environment via detrended 

canonical correspondence analysis.

Each of these methods generate graphical plots which require some explanation for 

proper interpretation. For the following simple example, imagine a hypothetical river- 

dominated estuary which floods in the spring. The data are a transect trawl samples of 

fishes taken in the central portion of the estuary across a single year.

TWINSPAN Classification — The primary result of TWINSPAN is a two-way 

classification table of sites and species. The station or species classifications may also be 

represented as dendrograms where each level represents sequential dichotomies of the 

previous levels. Divisions are made successively according to the scheme shown in 

Figure 46.

The data are first ordinated by reciprocal averaging (i.e., correspondence 

analysis). Species which characterize the extremes of the ordination are used to split the
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data set near the middle. The division process is then repeated on the two sample subsets 

(0 and 1) to give four clusters, and so on, until each cluster has no more then a preset 

number of samples (e.g., 10). the results are plotted in a dendrogram of sequential 

dichotomies, coded in binary. The species used to polarize the groups are called 

Indicator Species, and are plotted in decreasing order of importance at each division. 

Indicator species are those species which best serve to separate the groups and are not 

necessarily the most abundant taxa. The relative strength of the division is given by an 

eigenvalue which ranges from zero to one. Generally, an eigenvalue is considered strong 

above 0.3, and very strong above 0.5. In the example, the stations have split into two 

primary groups with species A and B suggested as indicators for station group 1, and 

species C and D are suggested for station group 2.

DCA Ordination — The primary result of DCA is an ordination diagram, i.e. a 

graph with a coordinate system formed by the ordination axes (synthetic gradients 

extracted by the analysis). A DCA diagram only consists of points for stations and/or 

species. The coordinates of the station points are the values (termed scores) of the 

stations on the two best synthetic gradients (axes 1 and 2). Station scores reside at their 

distributional center for each axis, i.e., by the weighted average of the axis-scores of 

species which occur at the station (weight is determined by the actual abundance value). 

Consequently, each station point in the diagram is at the centroid (weighted average) of 

the species scores (i.e., the relative center of the two-dimensional distribution of the 

species in the ordination space). A consequence of this algorithm is that all station scores 

will reside within the range of species scores. Scaling of the axes is based on Hill &
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Gauch’s (1980) original formulation where one unit represents a standard deviation (SD) 

in the rate of species turnover. Thus, stations separated by two SD units share 

approximately 50% of their species composition whereas stations separated by four SD 

units may have no species in common. Gradients of greater than 3 SD are considered 

long (Gauch 1982).

In the example, the stations are spread along two synthetic gradients (DCA axes 1 

and 2), with the greater turnover (5 SD’s or >100% turnover) along axis 1 (Fig. 47). The 

two groups of stations are distinct within the ordination space, and the scores of species 

A-D tend to polarize the samples. Species E-G are distributed near the origin, suggesting 

they are common to both station groups.

DCCA Ordination — The allocation of station scores and species scores in DCCA 

is similar to DCA with one major exception. As the station scores are constrained by a 

multivariate regression on the environmental variables, species scores now represent a 

niche center within the environmental space (to the extent that the species niche may be 

defined by the set of environmental covariables included in the analysis). DCCA allows 

the simultaneous plotting of species and/or site scores with environmental variables in a 

joint plot. Environmental gradients are represented by vectors, and sites or species by 

symbols. The axes are based on the species composition (as in DCA), but are rescaled to 

a range of zero to one. The environmental vectors may now be projected onto the axes, 

and the X-Y coordinates of the vectors’ terminus equal the correlation coefficients for the 

variable with the species composition axes. The angle between vectors indicates the 

strength of intercorrelations between variables (90° = no correlation). The location of
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site scores relative to the vectors indicates the environmental characteristics of the sites, 

and the proximity of species scores relative to the vectors indicates the environmental 

“preferences” of each species. Species scores may be projected onto a vector such that 

the ordering of species along the axis of the vector are maximum likelihood estimates of 

species modes under the assumption that species abundance is a Gaussian function of 

environmental gradients.

In the example, species scores and environmental vectors are plotted for the trawl 

data (Fig. 48). The first species compositional gradient (axis 1) is most highly correlated 

with salinity (~ 0.90), and the second with water temperature (~ 0.70). The relative 

distribution of species scores is preserved. Species E-G reside near the origin suggesting 

limited preferences along gradients of salinity or temperature. These species are likely 

estuarine residents with broad tolerances. Species A and B occur primarily in higher 

salinity, lower temperature stations, and are probably boreal species which penetrate the 

estuary during winter months. Species C and D occur at lower salinity, higher 

temperature stations. These are probably facultative riverine species which penetrate the 

estuary during the spring flood, retreating during the later part of the year.
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Figure 46: Example of a TWINSPAN classification dendrogram.
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Figure 47: Example of a detrended correspondence analysis biplot of station scores

and species scores.
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Figure 48: Example of a detrended canonical correspondence analysis biplot of

species scores and environmental vectors.



DC
CA

 
Ax

is 
2

Environmental
Vectors

- f  Sp.A

Salinity +  Sp B
Sp. G

Sp E
+  S p DSp F

Sp. C
Species
Scores

Water
Temperature

-1 - 1

DCCA Axis 1



147

APPENDIX 2: Species 
codes used in DCA and 
DCCA plots.

Code Scientific Name Common Name

Al.ae. Alosa aestivalis blueback herring
Al.ps. Alosa pseudoharengus alewife
Am.ca. Ameiurus catus white catfish
An.he. Anchoa hepsetus striped anchovy
An.mi. Anchoa mitchelli bay anchovy
An.ro. Anguilla rostrata American eel
Ba.ch. Bairdiella chrysoura silver perch
Br.ty. Brevoortia tyrannus Atlantic menhaden
Ca.hi. Caranx hippos crevalle jack
Cy.an. Cyprinella analostana satinfin shiner
Cy.ca. Cyprinnus carpio common carp
Cy.ne. Cynoscion nebulosus spotted seatrout
Cy.re. Cy noscion re gal is weakfish
Do.ce. Dorosoma cepedianum gizzard shad
Do.pe. Dorosoma petenense threadfm shad
En.gl. Enneacanthus gloriosus bluespotted sunfish
Et.ol. Etheostoma olmstedi tessellated darter
Fu.di. Fundulus diaphanus banded killifish
Fu.he. Fundulus heteroclitus mummichog
Fu.ma. Fundulus majalis striped killifish
Ga.af. Gambusia affinis mosquitofish
Hy.re. Hybognathus regius eastern silvery minnow
Ic.fu. Ictalurus furcatus blue catfish
Ic.pu. Ictalurus punctatus channel catfish
Le.au. Lepomis auritus redbreast sunfish
Le.gi. Lepomis gibbosus pumpkinseed
Le.ma. Lepomis macrochirus bluegill
Le.xa. Leiostomus xanthurus spot
Me.am. Mentichirrus americanus southern kingfish
Me.be. Menidia beryllina inland silverside
Me.ma. Membras martinica rough silverside
Me.me. Menidia menidia Atlantic silverside
Mi.do. Micropterus dolomieu smallmouth bass
Mi.sa. Micropterus salmoides largemouth bass
Mi.un. Micropogonias undulatus Atlantic croaker
Mo.am. Morone americana white perch
Mo.sa. Morone saxatilis striped bass
Mu.ce. Mugil cephalus striped mullet
Mu.cu. Mugil curema white mullet
No.ch. Notemigonus chrysoleucas golden shiner
No.hu. Notropis hudsonius spottail shiner
Op.og. Opisthonema oglinum Atlantic thread herring
Op.ta. Opsanus tau oyster toadfish
Pa.de. Paralichthys dentatus summer flounder
Pe.fl. Perea flavescens yellow perch
Po.sa. Pomatomus saltatrix bluefish
Sc.ma. Scomberomorous maculatus Spanish mackerel
St.ma. Strongylura marina Atlantic needlefish
Sy.fo. Synodus foetens inshore lizardfish
Sy.pl. Symphurus plagiusa blackcheek tonguefish
Tr.ma. Trinectes maculatus hogchoker
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